
Aldo Barreiro Felpeto, June 2015

1

Table of contents

Preface. Why learning R? 3

Section 1: Basics of R language 5

1.1 First things to know about R

1.2 Objects

1.3 Operators

1.4 Functions

1.5 Packages

Section 2: Operating with objects 21

2.1 Operating and indexing with vectors

2.2 Operating and indexing with matrices and data frames

2.3 Operating and indexing with lists

Section 3: Functions of the “apply” family and loops 27

3.1. Loops

3.2 Other control structures

3.3 “apply” family of functions

Section 4: Managing data 33

4.1 Importing data into R

4.2 Exporting data

Section 5: Basic features of functions from graphics package. Other graphical packages 36

Bibliography 50

2

Preface

Why learning R?

1) Flexible and interactive language (“infinitely customizable to your problem”, no “black
boxes”).
Example of being flexible and interactive: control of model structure in linear mixed models

#all covariates:
> model1<-lm(vardep~varind1+varind2+varind3+varind4+varind5)
#consider interactions of order 2 only:
> model2<-lm(vardep~varind1:varind2:varind3:varind4:varind5)
#consider interactions until order 3 only:
> model3<-lm(vardep~(varind1+varind2+varind3+varind4+varind5)^3)
#consider all possible interactions:
> model4<-lm(vardep~varind1*varind2*varind3*varind4*varind5)
#one random factor affecting the slope and the intercept:
> model5<-lme(vardep~varind1*varind2*varind3*varind4*varind5,random=~1|block1)
#one random factor affecting only the intercept:
> model6<-lme(vardep~varind1*varind2*varind3*varind4*varind5,random=~1|)
#nested random factors:
> model7<-lme(vardep~varind1*varind2*varind3*varind4*varind5,random=~1|block1/block2)
#all at once:
> model8<-lme(vardep~varind1*varind2:varind3+
(varind4+varind5+varind6+varind7)^3,random=~1|block1/block2)

Think about the difference in flexibility of R respect to other software (SPSS, STATISTICA)
simply as the difference between an elaborated human language respect to any other
language made of signs, for instance, traffic signs. The human language has elements
structured at different levels (phonemes, words, phrases) and is highly articulated at each
level. This can generate lots of different meanings with subtle changes. So, it can
“customize” communication with high accuracy. A language like the traffic signs, with few
levels and almost not articulated at all, can not account for subtle changes in the meaning
of the messages.
But, …. the more elaborated languages are more difficult to learn as well. It is not worth
learning a complicated language if you just want to communicate simple messages like:
“you must stop”, “you are allowed to run as fast as 80 km per hour” etc. The same trade –
off exists between learning to use R and other statistical software (SPSS, STATISTICA,
etc.).
However, in their most recent versions, many other programs are becoming more
interactive and flexible (in part, due to the success of R).
The “black boxes” present in other software are those processes of the analysis in which
the user does not have control over one or several steps. So you might get an output
without knowing exactly what the software has done, and you can not modify this process.
The absence of “black boxes” is, in some sense, a problem for certain R users. No “black
boxes” policy implies that you have to know more about statistics in order to correctly use
the software. Because you have to control more steps of the analysis and understand what
is going on at each of them.

3

2) It is free.

3) Open source: lots of contributors, more applications than any other statistical software,
quality of backup and help, credibility, no “black boxes”.
As an example of the importance of R: some of the most popular commercial statistical
softwares make publicity of the features that connect their software to R applications. For
instance, SPSS has many connections to R applications that make them available to be
used with the SPSS interface.

4) Many applications already in packages (like S, SAS, SPSS,... but unlike C++).

5) It is relatively easy to incorporate routines from other languages in R: C, C++, Fortran
(cross compilation).

6) No rivals in cutting-edge statistical applications (mixed models, generalized additive
models, ...).

7) My favorite: “[…] many of the top people will have switched to R already. A large
proportion of the world leading statisticians use R, and this should tell you something [...]”
(M.J. Crawley, The R book, 2007).

Many of the above mentioned advantages of using R are many different sides of the basic
features of R. As I have pointed out a couple of times, the most common statistical
softwares have improved some aspects in their recent versions in order to better compete
with R.
It is important to keep in mind that some of the best features of R (such as the flexibility,
the lack of black boxes) make this language less user-friendly than other statistical
packages.
The point is not to do apology for the use of a specific software (either R or any other). The
ultimate choice depends a lot on your needs regarding the depth of the statistical
treatment of your data, your facilities regarding payment of software licenses, etc.
Be aware that, in order to be self-sufficient using R, you will need more time practicing
than with other software designed to be more user-friendly (SPSS, STATISTICA, etc.).
Although some GUIs (we will talk about it later) make the basic features of R almost as
accessible as SPSS or STATISTICA (R Commander). The software is a choice to be made
considering the trade – offs between time invested and reward.

4

Section 1: Basic of R language

Contents

1.1 First things to know about R

1.2 Objects

1.3 Operators

1.4 Functions

1.5 Packages

5

1.1 First things to know about R

R is a programming language for statistics and mathematics created by Ihaka and
Gentlemen in 1997. It was implemented based on the features of other two already
existing languages: S and Scheme. Currently, its development and maintenance is
performed by the R Development Core Team. R is part of the GNU project. Information
and downloads can be found at http://www.r-project.org/
A few remarkable features of R:
- R is an interpreted language, which means that its functioning is due to the interpretation
of text commands.
- R is an object – oriented language, which means that the information is stored in objects
with different properties. The objects are created by assigning them a value.
- is polymorphic, which means that the same function can be applied to many different
types of objects, and it works differently depending on the type of object and the argents
passed to the function.
- R is vectorial on its operations. Each object is treated as a vector, or a set of vectors.
Below is a very simple schematic view of how the R language works:

Starting with R (file Rcourse.1)

I assume that each student got the necessary instructions for downloading and
installing R by e-mail prior to the start of this course. Then, we go ahead to open an R
session. We open a new R session by clicking in the program icon or by typing “r” in the
Terminal.

There are many possible graphical User interfaces (GUIs) for R, depending also on
the operating system. The basic installation, irrespective of the operative system, provides
a very simple GUI, with a few displaying menus. There are other available GUIs that

6

http://www.r-project.org/

incorporate more features, like R Commander, Tinn-R, RKward (very similar to S-PLUS).
They are not available for all operating systems.
There is also an IDE (integrated development Environment) for R, called RStudio. It is a
graphical users interface as well, but that makes more accessible all the “dispersed”
features of R. Here are a picture of how the RStudio and R Commander interfaces:

An important thing to do at the beginning of an R session is setting the working
directory. From this directory we will import the files we need, with data and/or code, and

7

export the files with results and/or data that we generate in R. Usually, the GUIs have a
menu from which you can select graphically the working directory. In any case, there is a
built-in function in R to set the working directory, which is setwd():
MacOS notation:

> setwd("/Users/aldobarreirofelpeto")

The windows notation is a bit different:

> setwd("C:/Users/aldobarreirofelpeto")

In you want to know your actual working directory, use the function getwd():

> getwd()
[1] "/Users/aldobarreirofelpeto"

Now, we are going to start using examples from scripts. A script is a plain text file
where we can write and save our commands for future work sessions. We will see later
how to create a simple script structuring the commands to perform a simple analysis.
In order to execute the commands from a script, there are several options. You can just
place the cursor on the command line to execute and execute it by typing Ctrl + R in the
keyboard. If you want to execute at once more than one command, select the whole
commands and type Ctrl + R. In Mac there is no Ctrl + R option, you have to execute from
a menu in the GUI. For this course, however, I recommend to, mostly, write the commands
on your R console. Avoid copying and pasting commands, since if you get used to this, it
will cause errors, particularly when copy-pasting from pdf files.
How to stop a currently executing command is also a good thing to know. In Windows and
Mac, you can do it by typing “Esc”. In Mac there is a menu in the GUI as well.

As we mentioned before, the applications in R are distributed in packages. These
applications are groups of functions coded to perform specific tasks. When you download
R, you get installed a series of packages (base, utils, stats, graphics, datasets, MASS,...)
containing built-in functions of common use, as well as some data sets. The majority of
these packages are loaded by default in your R session as soon as you open it (base,
utils, datasets, stats, graphics) but others are not loaded, and you have to load them if you
need their functions (MASS). If you need applications from packages that are not installed,
you will need to install them from the R repositories, and load them in your session. We
will learn these processes while performing our exercises.
As we said above, R is an object – oriented language, so all the information that we
generate is stored in the memory of an object. Let's start creating a very simple object:

8

* It is possible to run simultaneous R sessions in your computer, in the same desktop. It
depends on your operating system how to proceed. In MacOS you can run one session
by clicking the R application icon and starting other one in the bash. Another option for
MacOS is to duplicate the application. You have to go to your Applications folder and
secondary-click the R icon, then select “duplicate” and a new copy of the application
appears, which you could run simultaneously with a session opened from the original R
application icon. In PC is very simple to start new sessions by clicking in the main icon,
there is no need to duplicate the application.

file:///C:/Users/aldobarreirofelpeto

We will call this object “x” and it is going to store the value of the integer “5”

> x<-5

The value of the object is “assigned”. The symbol for assigning is the “<-” but it could be
used the symbol “=” as well (so “x<-5” is equivalent to “x=5”).
Now, if we type the name of the object and “enter”, R returns the content of the object:

> x
[1] 5

Remember what we said somewhere above: objects in R are considered vectors. So, our
“x” is a vector of dimension 1, with length = 1. The number 1 inside the brackets indicates
that the element next to it is the first in the sequence of components of the object “x”.

Let's create a vector of greater length. Now, a one dimensional vector with length = 6
instead of 1.

> u<-c(5,9,13,1,3,9)

If we “ask” R about our new object “u”, it will tell us:

> u
[1] 5 9 13 1 3 9

Now it is time to talk a bit about a key component of R that we have already used:
the built-in functions. The built-in functions are coded in the packages that you have
installed and loaded in the session. These functions are used typing their names and
parentheses, which contain the function arguments. These arguments are the objects over
which the functions operate as well as other kind of specifications that modulate the action
of the function.

9

*An important feature of R language is that it is case sensitive, which means that it
differentiates lower from upper case. So our object is called “x”, not “X”:

> X
Error: objeto 'X' no encontrado

* The sybol “#” is to separte a coment from the actual code. Everything to the right of a “#”
will not be read by R.

Right:

> x #Our first example
[1] 5

Wrong:

> x Our first example
Error: inesperado símbolo en "x Our"

In order to create “x” and “u”, we used a very simple built-in function: c(). “c” stands for
“concatenate”. What this function does is simply concatenating elements to create a vector
of dimension = 1. In our case, we called this vector “u”.
Let's create objects with greater dimensions, for instance, a 3x3 matrix. As usually in R,
there are different ways to perform a specific task. For example, we can use the function
matrix(), indicating which elements are to be contained in the matrix, and the dimensions
of the matrix:

> A<-matrix(data=c(5,9,13,1,3,9,12,2,17),nrow=3,ncol=3,byrow=T)
> A
 [,1] [,2] [,3]
[1,] 5 9 13
[2,] 1 3 9
[3,] 12 2 17

As we can see, the first argument in the function matrix() is a vector with the matrix
components. We also specified the number of rows with the argument “nrow” and the
number of columns with the argument “ncol”. The argument “byrow” specifies in which
direction to read the numbers in order to construct the matrix. By default, this is performed
column-wise. So, in this example, we modified the default option.
Remember again that R considers every object as a vector, which is particularly important
when performing operations. So, for R, our matrix “A” is a vector that has three sub-
vectors (each column a vector, this is why by default a matrix is read column-wise).
Another way of creating a matrix is adding dimension 2 to an already existing one –
dimensional vector. For instance, we want to transform our vector “u” in a 3x2 matrix:

> dim(u)<-c(3,2) #R always reads first the rows, then the columns
> u
 [,1] [,2]
[1,] 5 1
[2,] 9 3
[3,] 13 9

Now, let's introduce another key feature from R. The HTML help. There are many
functions in R, with many different arguments, in different packages. There is no way you
can remember all of them. So the help will show you how to use a function (which
arguments it has, the possible values of the arguments, what the function returns when
applying it, and coded examples of the usage of the function). The function for the HTML
help is help(), and it can we abbreviated as “?”
An example:

> help(mean)
> ?mean

10

But the HTML help only applies to the functions contained in the packages that you have
INSTALLED AND LOADED in your session. And you have to type the EXACT function
name, otherwise it would not work:

> help(Mean)
No documentation for ‘Mean’ in specified packages and libraries:
you could try ‘??Mean’

If you are not sure about the exact function name, there is another function that performs a
search within ALL THE INSTALLED packages, not just the loaded ones. And will return the
name of the functions found with a name similar to the one you are looking for, as well as
the package were they are available. This function is help.search(), which performs its
search in the help system with fuzzy matching (that is why you do not have to type the
exact name of the function). It can be abbreviated as ??

> help.search(“linear model”) #Remember: “item to search”
> ??”linear model”

The help systems are very important, you will use the help almost every R session. There
is people who learned to program with R by themselves, just knowing how to use the help

11

* Now that we know about the help, a few comments about functions arguments: if we
write the arguments in the function in the correct position (the position shown in the HTML
help page) we do not have to write the argument name, only its value. If we do not want to
change the default value of an argument, we do not need to write this argument. As an
example of these things, let's create another matrix:

> ?matrix
> B<-matrix(c(5,10,23,4,5,2),3,2)

So this matrix will have the elements of the first vector, with 3 rows and 2 columns,
because we wrote all these three argument values in the correct place and the elements
will be inserted column-wise (because we did not specified anything in the argument
“byrow”, its default value is applied, which is “TRUE”). And the rows and columns will not
have names, because we did not use the argument “dimnames”:

> B

 [,1] [,2]
[1,] 5 4
[2,] 10 5
[3,] 23 2

It would be the same result like this:

> B2<-matrix(ncol=2,data=c(5,10,23,4,5,2),nrow=3)
> B2
 [,1] [,2]
[1,] 5 4
[2,] 10 5
[3,] 23 2

features.

A sometimes useful command is the one that removes all the objects created in a
session:

> rm(list=ls())

Closing an R session is as simple as typing q() in the console or clicking the “close”
button. You will be asked about saving the current workspace. By doing it, you will save
the objects stored in the memory of the session.

As a quick start with the very basic features of R, this was enough. What you have
learned so far are the foundations of what you should know in order to use R. Every new
features that we will learn so forth, will come like branches from this stem.

1.2 Objects

Above, we have explained what an object is and its main purpose, which is storing
data or results from analysis. We have created, in a very simple and straightforward way, a
couple two elemental kinds of objects: vectors and matrices. A vector is the most simple
kind of object. It has one only dimension, which in R is equivalent to a matrix column, and
at least one element, which position is equivalent to row numbers in a matrix. A matrix is a
two-dimensional object, with dimension 1 being rows and dimension 2 being columns.
When operating with matrices, columns are considered independent vectors.
But there are also other important kinds of objects:
- Arrays: 3 dimensions, they could be created with the array() function.
- Lists: sets of components of, potentially, different classes (we will see below what “class”
is). They could be created with the list() function.
It is very common that the results of a statistical test, performed with a single function are
returned as a list. Because these results might be a set of objects of different classes.
- Data frames: groups of data similar to matrices, but by default they consider that
variables are set by columns, and by default include variable names as column names.
They could be created with the data.frame() function. These are the ones we will use more
when working with data matrices. Usually, when be import a data set into R from a .xls, .txt
or similar file, it is imported by default as a data.frame.
R packages contain several data frames that are data sets, they are very useful for
learning statistical techniques and working with R functions. Some packages provide data
sets that are specific to try the functions coded in that package. There is a package,
datasets, that has only data sets, like: iris, airquality, CO2, cars, … check them in the
HTML help of this package!

> data(airquality)
> head(airquality)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4

12

5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

The “class” is an attribute of the R objects. It can be defined by a vector of
characters stating the name of the class:
- Numeric.
- Integer.
- Logical.
- Character.
It is important to mention that the class character is specified with “ ”. So that if we want to
create a vector of characters:

> ch<-c("a","b","A","B")
> ch
[1] "a" "b" "A" "B"

Or, it could be an implicit attribute of certain objects like:
- Matrix
- Array
You can ask which is the class of an object with the class() function:

> class(u)
[1] "matrix"
> class(ch)
[1] "character"

Objects also have a mode, which is the form that the object has in the program memory.

> test<-TRUE
> mode(test)
[1] "logical"
> mode(u)
[1] "numeric"
> mode(ch)
[1] "character"

There is another important attribute of objects, particularly in the case of data frames,
which is the structure. Let's ask R about the structure of a famous data frame that is
provided in the datasets package, the data frame iris:
In order to load this data frame in your session, you need the function data():

> data(iris)

If we want to know something about the origin and features of these data:

> ?iris

And now ask about its structure, with the function str():

> str(iris)
'data.frame': 150 obs. of 5 variables:

13

 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Let's see an example showing how lists are frequently used. We are going to perform a
Student's test, t-test, comparing the sepal length of two of the species, and store the
results in an object called “results”:

> results<-
t.test(iris[iris$Species=="versicolor","Sepal.Length"],iris[iris$Species=="setosa","Sepal
.Length"]) #Forget about the indexing so far!!!
> results

Welch Two Sample t-test

data: iris[iris$Species == "versicolor", "Sepal.Length"] and iris[iris$Species ==
"setosa", "Sepal.Length"]
t = 10.521, df = 86.538, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.7542926 1.1057074
sample estimates:
mean of x mean of y
 5.936 5.006

> class(results)
[1] "htest"
> mode(results)
[1] "list"

1.3. Operators

There are many operators... arithmetic: + , -, *, /, ^ (sign for power), logic: & (“and”),
| (“or”), ! (“no” or “different from”), == (“equal” or “the same as”), others: NA (“not available”,
usually a missing data), NaN (“not a number” returned from an operation that has no
result), -Inf, Inf, etc. matrix operations: %*% (matrix multiplication, be careful: * returns
element-wise multiplication), %o% (outer product).
You can check them at the HTML help:

> ?Arith
> ?Compare

1.4. Functions

Common built-in functions from the default downloaded and installed packages:
- Arithmetic: log(), log10(), exp(),sqrt(),...
- Trigonometric: sin(), cos(), tan(),...

14

- Complex: Arg(), Conj(), Im(),...
- Conversion between object attributes: as.numeric(), as.character(),...
- Properties of objects: is.numeric(), is.character(),...
- Summaries: max(), min(), range(), sum(),...
- Statistic: mean(), var(), sd(), median(), lm(), aov(), rnorm(),...
- Graphics: plot(), hist(), boxplot(), pie(),...
- Loops: apply(), sapply(), lapply, mapply(), tapply()...
You can check them in the HTML help:

> ?Math
> ?Math2
> ?Summary
> ?Complex

Using common built-in functions (file Rcourse.2)

Now we are going to have a look at examples of the use of relevant built-in functions that
are present in the default installed and loaded packages, grouping them into categories
based on the kind of tasks that they perform. We are going to use our examples of
functions with some objects created ad-hoc, as well as data sets from the datasets
package.

> data(airquality)
> head(airquality)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

Summary functions

They are useful for calculating summary values from data.
Calculate a maximum

> max(airquality$Temp)
[1] 97

Calculate a minimum

> min(airquality$Temp)
[1] 56

Calculate a range

> range(airquality$Temp)
[1] 56 97

Calculate a cumulative sum

15

> sum(airquality$Solar.R)
[1] NA

This one does not work if there are NA in the vector!
Check the help:

> ?sum

So, we see that we have to change the default value of the argument “na.rm”:

> sum(airquality$Solar.R,na.rm=TRUE)
[1] 27146

Statistical functions

These are self – explanatory:

> mean(airquality$Ozone,na.rm=T)
[1] 42.12931
> median(airquality$Ozone,na.rm=T)
[1] 31.5
> sd(airquality$Ozone,na.rm=T)
[1] 32.98788
> var(airquality$Ozone,na.rm=T)
[1] 1088.201

There is a family for generating random numbers, withdrawn from specific distributions:

> rnorm(10)
 [1] -1.59191752 0.40536897 -0.90492153 -1.05683395 -1.04285024 1.14036009 -0.25691899
 [8] 2.18496568 -0.24035442 -0.09505727
> rnorm(15,mean=mean(airquality$Ozone,na.rm=T),sd=sd(airquality$Ozone,na.rm=T))
 [1] 30.848315 7.876733 37.930143 -18.509056 81.759604 49.036042 44.889502
72.786658
 [9] 13.941220 55.094098 45.806069 20.704722 33.920354 19.854788 10.767707
> ?rnorm

There are several functions for performing simple statistical tests:

- Anova

> data(airquality)
> model1<-aov(airquality$Ozone~airquality$Solar.R+airquality$Temp)
> summary(model1)
 Df Sum Sq Mean Sq F value Pr(>F)
airquality$Solar.R 1 14780 14780 26.76 1.07e-06 ***
airquality$Temp 1 47378 47378 85.79 2.22e-15 ***
Residuals 108 59644 552

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
42 observations deleted due to missingness

16

- Student's t-test

t.test(airquality[airquality$Month==5,"Temp"],airquality[airquality$Month==8,"Temp"])

Welch Two Sample t-test

data: airquality[airquality$Month == 5, "Temp"] and airquality[airquality$Month == 8,
"Temp"]
t = -10.789, df = 59.904, p-value = 1.138e-15
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -21.83446 -15.00425
sample estimates:
mean of x mean of y
 65.54839 83.96774

Non parametric tests:

- Wilcoxon test for 2 groups (equivalent to Mann – Whitney test)

> wilcox.test(Ozone~Month,data=airquality,subset=Month%in%c(5,8))

Wilcoxon rank sum test with continuity correction

data: Ozone by Month
W = 127.5, p-value = 0.0001208
alternative hypothesis: true location shift is not equal to 0

Mensajes de aviso perdidos
In wilcox.test.default(x = c(41L, 36L, 12L, 18L, 28L, 23L, 19L, :
 cannot compute exact p-value with ties

Note how useful is the argument “data” (common to many other functions). With it, you do
not have to write the “$” to locate a variable inside the data frame. There is a similar
alternative to do this with the function attach(), but I do not recommend using it, it is
dangerous when you are working with variables with the same name in different data
frames.

- Kruskal – Wallis anova for k groups:

> kruskal.test(Ozone~Month,data=airquality)

Kruskal-Wallis rank sum test

data: Ozone by Month
Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06

17

Text

There are functions for writing text in R. They are not going to be very useful in this course,
with the exception of those for writing text in plots, that we will see in the next section. So
we are not going through examples, but at least mention some: cat() concatenates
characters, with several options to bind them. print() prints its argument. paste() transforms
objects into strings of characters and then concatenates them in a single string. There are
several functions for processing text: substr() gives access to characters inside a string,
strsplit() splits strings.

User-defined functions (file Rcourse.2)

When working with R it is very important to define your own functions. We are going to see
a simple example. In order to define a function, you have to assign to its name a structure
that defines its arguments within parentheses and its code within keys. Often, the function
return() is used in order to specify the ultimate value to return from the function.

> myfunct<-function(x,a){
+ tot<-sum(x)
+ pow<-tot^a
+ return(pow)
+ }
>
> z<-c(34,56,78,90)
> myfunct(z,3)

18

* You can see the code of a function by simply typing the function name without
parentheses and click enter:

> sd
function (x, na.rm = FALSE)
{
 if (is.matrix(x)) {
 msg <- "sd(<matrix>) is deprecated.\n Use apply(*, 2, sd) instead."
 warning(paste(msg, collapse = ""), call. = FALSE, domain = NA)
 apply(x, 2, sd, na.rm = na.rm)
 }
 else if (is.vector(x))
 sqrt(var(x, na.rm = na.rm))
 else if (is.data.frame(x)) {
 msg <- "sd(<data.frame>) is deprecated.\n Use sapply(*, sd) instead."
 warning(paste(msg, collapse = ""), call. = FALSE, domain = NA)
 sapply(x, sd, na.rm = na.rm)
 }
 else sqrt(var(as.vector(x), na.rm = na.rm))
}
<bytecode: 0x1bb0f48>
<environment: namespace:stats>

[1] 17173512

Generate output files (file Rcourse.2)

It is very common to generate simple output files storing the results of the
commands that are executed in a session, instead of showing them in the screen. This is
useful for the storage of results from statistical tests. Here is a simple example of how ths
could be done, with the function sink():

> out<-"Myfile.txt"
> sink(out)
> data(airquality)
> head(airquality)
> t.test(airquality[airquality$Month==5,"Temp"],airquality[airquality$Month==8,"Temp"])
> sink()

First, we created an object storing the file name and extension (in this case, we called it
“out”). Then, we “open” this output with the function sink(), indicating within the
parentheses which is the output file that will gather the results. Then, we write the
commands fo the operations that we aim to do, and finally, we siply close the output file
with sink(). It is very important to remember to close the output files.

1.5 Packages

Install and load packages

In the GUIs, there is usually a menu to perform this task. But you can also use functions
with commands. For package installation:

> install.packages(“name of the package”, dep=TRUE)

Then, a list with the world R repositories appears, the “CRAN mirrors”. You should select
the closest one in geographical terms. If you are in Europe, any european mirror should
work. If you “suspect” about the quality of the mirrors, that one that you should always trust
is the one from Austria, since it is the central one of the R core developers.
It is important that you specify the argument “dep=TRUE”. This is because there are
packages that need subsidiary functions from other packages, and if you do not have them
installed, the functions from this package may not work properly. With the argument
“dep=TRUE”, you will install all those packages that contain the subsidiary functions.
Those packages are called “dependencies”.
If you install the packages from the GUI menus, after selecting a mirror, a list with all the R

19

* Another feature of the help is the information about packages. You have all of the
information you need in the pdf manual in the R project web. But if you want some
information about a specific package to appear in your R session, you can type:

> library(help=datasets)

packages will appear, and then you have to select the one you want to install. Somewhere
in the menus or dialog boxes should appear an option for installing the dependencies.
You can load a package as with menus from the GUI as well. Otherwise, the functions to
perform it in the R console, with commands are:

> library(name of the package)

or

> require(name of the package)

Update R and packages

In order to update R to a newer version, without losing your installed packages, you have
to do three things: first, you have to uninstall the old R version. Second, you have to go to
the system folder containing you current R version in your operating system, and change
the folder name to the name of the new R version (important to type the name correctly).
Third, you have to download the new R version. It is important to say “YES” when asking if
you want to install R in the already existing folder.
For the update of packages, you can usually go through a series of menus in the GUIs.
But if you prefer to use functions in the R console you have to write this command:

> update.packages()

Then, R will show you one by one the available versions of each package, and if you want
to update, you just type “yes”.
If you want to update a specific package, use the above function this way:

> update.packages(type=”name of the package”)

Demos

Many packages contain demos that show you briefly what kind of things could be done
with that packages. The function is very simple:

> demo(graphics)

Then, a series of plots will appear (you usually have to click “enter” in order to change
page), together with the scripts containing the code that was used to generate those plots.
There is also another useful function to show the utilities of specific functions:

> example(barplot)

20

Section 2: Operating with objects

Contents

2.1 Operating and indexing with vectors

2.2 Operating and indexing with matrices and data frames

2.3 Operating and indexing with lists

21

2.1 Operating and indexing with vectors (file Rcourse.3)

The process of locating and selecting data is a very important one in programming
or performing statistical analysis. Here we will show how can be performed with R.
Selecting elements in vectors of dimension = 1. Let's create a new vector for this purpose,
with the function: seq()

> w<-seq(2,16,2)

The simplest way to locate an element is by typing the ordinal number of that element
within brackets. So, if we would like to select the third element of “w”:

> w[3]
[1] 6

If we want to choose more than one element, we need the concatenate function, c():

> w[c(3,5)]
[1] 6 10

The function which() is very useful in order to set logical conditions for selecting elements:

> which(w>=10)
[1] 5 6 7 8

This returns the position of elements of “w” that agrees with the condition. But:

> w[which(w>=10)]
[1] 10 12 14 16

If we write the function inside the brackets, it will return the value of the elements that
occupy those positions.
The function any() returns a logical with respect to the specified condition:

> any(w<10)
[1] TRUE
> any(w>20)
[1] FALSE

We might we interested in deleting elements from a vector:

> w[-4]
[1] 2 4 6 10 12 14 16
> w[-c(4,5)]
[1] 2 4 6 12 14 16
> w[-which(w>=10)]
[1] 2 4 6 8

22

2.2 Operating and indexing with matrices and data frames (file
Rcourse.3)

Indexing in matrices, data frames and arrays is very similar. The only thing to take
into account is that there are more dimensions. Each dimension inside the brackets is
separated by a comma “,”. The position to the left of the “,” indicates rows, the position in
the right indicates columns, and in the case of the arrays, there is a second “,” separating
the third dimension. For example, we are going to select the element in the third row and
second column from the data frame “dat”. For this purpose, in this example, we have to
import a data set that we have in .csv file. Later, we will show in detail how to import data
into an R session, now just worry about the indexing:

> dat<-read.csv2("Growth.csv",sep=",")
> head(dat)
 NO2 r
1 48.81 0.8154953
2 48.82 0.8154953
3 48.83 0.9640916
4 97.40 0.9640916
5 49.65 0.6424458
6 49.75 0.6424458
> dat[3,2]
[1] 0.9640916

If we need all the elements from a column, the place for the rows (left to the comma)
should be empty. This indicates “I want all the rows”:

> dat[,2]
 [1] 0.815495325 0.815495325 0.964091604 0.964091604 0.642445838 0.642445838 0.486470530
 [8] 0.486470530 0.419487008 0.419487008 0.288947095 0.288947095 0.416609389 0.640224779
[15] 0.629875001 0.732448969 0.037589208 0.001508723 0.113558910

Correspondingly, if we wanted the elements from all the columns:

> dat[3,]
 NO2 r
3 48.83 0.9640916

We can complicate things a bit more, and introduce how the “:” works in order to create a
sequence of integers with step size = 1:

> dat[4:10,2]
[1] 0.9640916 0.6424458 0.6424458 0.4864705 0.4864705 0.4194870 0.4194870

If the rows or columns had names, it is also possible to select by name. But name is a
character, so it has the signs “ ”:

> dat[,"NO2"]
 [1] 48.81000 48.82000 48.83000 97.40000 49.65000 49.75000 49.67000 49.72000
 [9] 21.67000 22.00522 0.90000 0.80000 111.21611 340.00000 260.00000 100.00000
[17] 0.50000 0.40000 0.50000

23

We can try a few more complicated ways of selecting data with a more complex data
frame, the data set iris:

> data(iris)
> iris[(iris$Sepal.Length==5)&(iris$Species=="setosa"),1:3]
 Sepal.Length Sepal.Width Petal.Length
5 5 3.6 1.4
8 5 3.4 1.5
26 5 3.0 1.6
27 5 3.4 1.6
36 5 3.2 1.2
41 5 3.5 1.3
44 5 3.5 1.6
50 5 3.3 1.4

> iris[iris$Sepal.Width>mean(iris$Sepal.Width),c("Sepal.Width","Species")]
 Sepal.Width Species
1 3.5 setosa
3 3.2 setosa
4 3.1 setosa
5 3.6 setosa
6 3.9 setosa
7 3.4 setosa
8 3.4 setosa
10 3.1 setosa
11 3.7 setosa
12 3.4 setosa
15 4.0 setosa
16 4.4 setosa
17 3.9 setosa
18 3.5 setosa
19 3.8 setosa
20 3.8 setosa
21 3.4 setosa
22 3.7 setosa
23 3.6 setosa
24 3.3 setosa
25 3.4 setosa
27 3.4 setosa
28 3.5 setosa
29 3.4 setosa
30 3.2 setosa
31 3.1 setosa
32 3.4 setosa
33 4.1 setosa
34 4.2 setosa
35 3.1 setosa
36 3.2 setosa
37 3.5 setosa
38 3.6 setosa
40 3.4 setosa
41 3.5 setosa
43 3.2 setosa
44 3.5 setosa

24

45 3.8 setosa
47 3.8 setosa
48 3.2 setosa
49 3.7 setosa
50 3.3 setosa
51 3.2 versicolor
52 3.2 versicolor
53 3.1 versicolor
57 3.3 versicolor
66 3.1 versicolor
71 3.2 versicolor
86 3.4 versicolor
87 3.1 versicolor
101 3.3 virginica
110 3.6 virginica
111 3.2 virginica
116 3.2 virginica
118 3.8 virginica
121 3.2 virginica
125 3.3 virginica
126 3.2 virginica
132 3.8 virginica
137 3.4 virginica
138 3.1 virginica
140 3.1 virginica
141 3.1 virginica
142 3.1 virginica
144 3.2 virginica
145 3.3 virginica
149 3.4 virginica

There is also a very convenient function that could be used to select observations in data
sets structured with factors, the function subset():

> subset(iris,Sepal.Length>=5&Sepal.Width>=4,select=c(Sepal.Length,Sepal.Width,Species))
 Sepal.Length Sepal.Width Species
15 5.8 4.0 setosa
16 5.7 4.4 setosa
33 5.2 4.1 setosa
34 5.5 4.2 setosa

Notice, from most of the examples above, how important is to use correctly the symbols “ ”
and $.

2.3 Operating and indexing with lists (file Rcourse.3)

Basically, this is the way to proceed with matrices, data frames and arrays (with
these, it would be the same, just adding a second comma to separate the third dimension).
Now we have completed the most important indexing issues relative to the most common
objects in R. Now let's see a few examples with lists, for which there are some subtle
differences.
First, let's create a simple list:

25

> exV<-c(letters[1:10]) #We introduce the built-in object "letters"
> exV
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
> exM<-matrix(rep(5,25),5,5) #We introduce the function rep()
> exM
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 5 5 5 5
[2,] 5 5 5 5 5
[3,] 5 5 5 5 5
[4,] 5 5 5 5 5
[5,] 5 5 5 5 5
> ex<-"Results"
> ex
[1] "Results"
> mylist<-list(exV,exM,ex)
> mylist
[[1]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

[[2]]
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 5 5 5 5
[2,] 5 5 5 5 5
[3,] 5 5 5 5 5
[4,] 5 5 5 5 5
[5,] 5 5 5 5 5

[[3]]
[1] "Results"

First thing about indexing in lists, the brackets ([]) are now double brackets ([[]]).

> mylist[[2]]
 [,1] [,2] [,3] [,4] [,5]
[1,] 5 5 5 5 5
[2,] 5 5 5 5 5
[3,] 5 5 5 5 5
[4,] 5 5 5 5 5
[5,] 5 5 5 5 5

And we can also select sub-elements within a list (combining double and single brackets):

> mylist[[1]][3]
[1] "c"

26

Section 3: Functions of the “apply” family and loops

Contents

3.1. Loops

3.2 Other control structures

3.3 “apply” family of functions

27

3.1. Loops (file Rcourse.4)

In order to built complex programs, we need to implement control structures, like
loops. There are different ways to perform loops in R. The most common is with for, but
you could implement a loop with the functions while and repeat. They are not used in the
same way as a built-in function. You need to specify within brackets the operation to be
performed. Here are is a simple example with for:

> res<-NULL
> for (i in 1:nrow(airquality)){res[i]<-airquality$Ozone[i]^3}
> res
 [1] 68921 46656 1728 5832 NA 21952 12167 6859 512 NA
 [11] 343 4096 1331 2744 5832 2744 39304 216 27000 1331
 [21] 1 1331 64 32768 NA NA NA 12167 91125 1520875
 [31] 50653 NA NA NA NA NA NA 24389 NA 357911
 [41] 59319 NA NA 12167 NA NA 9261 50653 8000 1728
 [51] 2197 NA NA NA NA NA NA NA NA NA
 [61] NA 2460375 117649 32768 NA 262144 64000 456533 912673 912673
 [71] 614125 NA 1000 19683 NA 343 110592 42875 226981 493039
 [81] 250047 4096 NA NA 512000 1259712 8000 140608 551368 125000
 [91] 262144 205379 59319 729 4096 474552 42875 287496 1815848 704969
[101] 1331000 NA NA 85184 21952 274625 NA 10648 205379 12167
[111] 29791 85184 9261 729 NA 91125 4741632 389017 NA 438976
[121] 1643032 592704 614125 884736 474552 389017 753571 103823 32768 8000
[131] 12167 9261 13824 85184 9261 21952 729 2197 97336 5832
[141] 2197 13824 4096 2197 12167 46656 343 2744 27000 NA

3.2 Other control structures (file Rcourse.4)

A useful function to establish similar control structures is ifelse(), which operates with
logical conditions:

> ifelse(airquality$Ozone>=30,1,0)
 [1] 1 1 0 0 NA 0 0 0 0 NA 0 0 0 0 0 0 1 0 1 0 0 0 0 1 NA NA NA 0
1
 [30] 1 1 NA NA NA NA NA NA 0 NA 1 1 NA NA 0 NA NA 0 1 0 0 0 NA NA NA NA NA NA
NA
 [59] NA NA NA 1 1 1 NA 1 1 1 1 1 1 NA 0 0 NA 0 1 1 1 1 1 0 NA NA 1 1
0
 [88] 1 1 1 1 1 1 0 0 1 1 1 1 1 1 NA NA 1 0 1 NA 0 1 0 1 1 0 0 NA
1
[117] 1 1 NA 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0
[146] 1 0 0 1 NA 0 0 0

3.3 “apply” family of functions (file Rcourse.4)

I use this name to refer to a very important group of functions in R. These functions
allow us to perform a loop, applying a function, over one or two dimensions of an object.

28

They have different names depending on how they return their results, the class of the
objects over which they can operate or the dimensions over which they can perform the
loop (if they are uni- or multi-variate). These functions constitute one of the most
convenient features of R as a programming language respect to other languages, that
need more complicated loops in order to perform this kind of operations. Let's see some
examples:

In a one dimensional vector, or a list, sapply() returns a vector:

> sapply(airquality$Wind,sqrt)
 [1] 2.720294 2.828427 3.549648 3.391165 3.781534 3.860052 2.932576 3.714835 4.483302
 [10] 2.932576 2.626785 3.114482 3.033150 3.301515 3.633180 3.391165 3.464102 4.289522
 [19] 3.391165 3.114482 3.114482 4.074310 3.114482 3.464102 4.074310 3.860052 2.828427
 [28] 3.464102 3.860052 2.387467 2.720294 2.932576 3.114482 4.012481 3.033150 2.932576
 [37] 3.781534 3.114482 2.626785 3.714835 3.391165 3.301515 3.033150 2.828427 3.714835
 [46] 3.391165 3.860052 4.549725 3.033150 3.391165 3.209361 2.509980 1.303840 2.144761
 [55] 2.509980 2.828427 2.828427 3.209361 3.391165 3.860052 2.828427 2.024846 3.033150
 [64] 3.033150 3.301515 2.144761 3.301515 2.258318 2.509980 2.387467 2.720294 2.932576
 [73] 3.781534 3.860052 3.860052 3.781534 2.626785 3.209361 2.509980 2.258318 3.391165
 [82] 2.626785 3.114482 3.391165 2.932576 2.828427 2.932576 3.464102 2.720294 2.720294
 [91] 2.720294 3.033150 2.626785 3.714835 2.720294 2.626785 2.720294 2.144761 2.000000
[100] 3.209361 2.828427 2.932576 3.391165 3.391165 3.391165 3.114482 3.391165 3.209361
[109] 2.509980 2.720294 3.301515 3.209361 3.937004 3.781534 3.549648 3.114482 1.843909
[118] 2.828427 2.387467 3.114482 1.516575 2.509980 2.509980 2.626785 2.258318 1.673320
[127] 2.144761 2.720294 3.937004 3.301515 3.209361 3.301515 3.114482 3.860052 3.937004
[136] 2.509980 3.301515 3.391165 2.626785 3.714835 3.209361 3.209361 2.828427 3.549648
[145] 3.033150 3.209361 3.209361 4.074310 2.626785 3.633180 3.781534 2.828427 3.391165

The equivalent to sapply() in matrices, data frames or arrays is apply():

> apply(airquality[,1:4],2,mean,na.rm=T)
 Ozone Solar.R Wind Temp
 42.129310 185.931507 9.957516 77.882353

In lists, or one dimensional vectors, lapply() returns a list:

> newlist<-list(a=rnorm(10),b=rpois(10,3),c=rchisq(10,1))
> lapply(newlist,sd)
$a
[1] 1.375927

$b
[1] 0.8232726

$c
[1] 1.78412

mapply() is a multivariate version of sapply():

> n<-seq(10,60,10)
> m<-seq(0,25,5)
> d<-1:6
> mapply(rnorm,n=n,mean=m,sd=d)

29

[[1]]
 [1] -0.3410049 0.4323415 0.3516355 -0.8372031 -0.2830185 0.8749000 0.3707977
-0.5184339
 [9] 0.8477962 0.8887328

[[2]]
 [1] 6.3192104 7.0658536 5.4359676 5.8912294 2.1125294 4.3101721 6.6034879 4.7204819
 [9] 7.1181019 2.9935151 5.0502183 5.5654906 4.7421671 5.7359081 2.8021586 4.4425867
[17] 6.3686981 0.5284532 4.3926148 1.2366614

[[3]]
 [1] 9.262279 8.622019 4.181492 7.615304 14.884560 4.560162 5.584390 11.926778
 [9] 9.866775 11.638280 11.613373 11.247880 5.734978 7.427800 10.323455 8.686091
[17] 7.926096 12.337703 6.921334 8.553245 7.993458 11.030824 10.491214 6.516386
[25] 10.415909 14.582014 12.652237 10.320437 14.636407 9.161725

[[4]]
 [1] 14.039670 17.025962 16.330808 12.575764 16.764375 16.456429 15.978264 12.895216
 [9] 12.527887 13.365563 17.966810 5.874060 22.637297 22.339022 16.317141 22.704709
[17] 17.749680 16.412733 14.430827 11.010198 18.478512 11.825207 10.974432 6.948024
[25] 15.155345 10.159393 11.055073 12.300910 13.175993 10.230596 17.930956 11.169400
[33] 10.969809 15.216220 20.892360 17.753215 14.092371 15.634261 19.314253 21.098948

[[5]]
 [1] 18.682156 25.094968 9.274294 12.397940 16.868750 21.762478 20.529611 24.467231
 [9] 24.814708 27.493695 16.112136 19.645944 20.931607 13.369234 14.130686 17.012648
[17] 26.948434 25.387613 22.106181 10.389036 23.513035 19.190013 26.861857 26.922371
[25] 16.230487 17.304604 17.440033 16.025489 16.709490 19.859731 23.525476 16.700985
[33] 16.405295 23.698648 23.201127 17.003933 23.043499 16.229006 9.481021 31.575795
[41] 29.347441 22.074244 27.272004 13.222210 22.353553 18.358591 15.424012 26.625223
[49] 26.432720 19.813154

[[6]]
 [1] 26.49586 17.29606 16.81156 28.34440 27.03726 23.52428 30.28758 29.74780 27.61815
[10] 10.53872 28.55658 29.47653 8.09089 21.52203 30.08308 18.76776 22.71881 22.68679
[19] 26.34976 22.48113 22.39868 24.56411 11.43283 24.82806 29.38269 19.69017 25.42932
[28] 35.88416 32.38297 28.33910 25.45460 22.11562 29.26370 29.24052 33.44069 20.57193
[37] 28.97481 26.70283 34.14409 25.79775 12.72875 18.82033 22.87307 14.07122 21.73772
[46] 16.40428 31.44385 27.00159 24.90420 16.25908 28.38914 24.12845 14.76581 20.14278
[55] 17.80610 25.30808 15.69419 35.68506 15.53320 30.82491

Another one, tapply(), very similar to by() function, is very useful for applying functions to
data frames structured in groups, categories or factors, like iris:

> data(iris)
> tapply(iris$Sepal.Width,iris$Species,sd)
 setosa versicolor virginica
 0.3790644 0.3137983 0.3224966

Other functions of this “family” that we are just going to mention are: vapply(),
eapply(), rapply().
There are other functions that perform similar operations. Let's see one important
example: the function aggregate(). This function can perform a similar task than tapply() or
by(), but with several factors and variables at once, which is s great advantage. Here is an

30

example applying a function that returns most of the basic descriptive statistics at once:

> require(pastecs)
Loading required package: pastecs
Loading required package: boot
> data(CO2)
> aggregate(CO2[,4:5],by=list(CO2$Plant,CO2$Type),FUN=stat.desc)
 Group.1 Group.2 conc.nbr.val conc.nbr.null conc.nbr.na conc.min
1 Qn1 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
2 Qn2 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
3 Qn3 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
4 Qc1 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
5 Qc3 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
6 Qc2 Quebec 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
7 Mn3 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
8 Mn2 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
9 Mn1 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
10 Mc2 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
11 Mc3 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
12 Mc1 Mississippi 7.000000e+00 0.000000e+00 0.000000e+00 9.500000e+01
 conc.max conc.range conc.sum conc.median conc.mean
1 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
2 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
3 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
4 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
5 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
6 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
7 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
8 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
9 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
10 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
11 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
12 1.000000e+03 9.050000e+02 3.045000e+03 3.500000e+02 4.350000e+02
 conc.SE.mean conc.CI.mean.0.95 conc.var conc.std.dev conc.coef.var
1 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
2 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
3 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
4 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
5 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
6 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
7 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
8 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
9 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
10 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
11 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
12 1.200893e+02 2.938478e+02 1.009500e+05 3.177263e+02 7.304053e-01
 uptake.nbr.val uptake.nbr.null uptake.nbr.na uptake.min uptake.max
1 7.0000000 0.0000000 0.0000000 16.0000000 39.7000000
2 7.0000000 0.0000000 0.0000000 13.6000000 44.3000000
3 7.0000000 0.0000000 0.0000000 16.2000000 45.5000000
4 7.0000000 0.0000000 0.0000000 14.2000000 38.7000000
5 7.0000000 0.0000000 0.0000000 15.1000000 41.4000000
6 7.0000000 0.0000000 0.0000000 9.3000000 42.4000000
7 7.0000000 0.0000000 0.0000000 11.3000000 28.5000000
8 7.0000000 0.0000000 0.0000000 12.0000000 32.4000000

31

9 7.0000000 0.0000000 0.0000000 10.6000000 35.5000000
10 7.0000000 0.0000000 0.0000000 7.7000000 14.4000000
11 7.0000000 0.0000000 0.0000000 10.6000000 19.9000000
12 7.0000000 0.0000000 0.0000000 10.5000000 22.2000000
 uptake.range uptake.sum uptake.median uptake.mean uptake.SE.mean
1 23.7000000 232.6000000 35.3000000 33.2285714 3.1048897
2 30.7000000 246.1000000 40.6000000 35.1571429 4.1591470
3 29.3000000 263.3000000 42.1000000 37.6142857 3.9119127
4 24.5000000 209.8000000 32.5000000 29.9714286 3.1501863
5 26.3000000 228.1000000 38.1000000 32.5857143 3.9010028
6 33.1000000 228.9000000 37.5000000 32.7000000 4.2849682
7 17.2000000 168.8000000 27.8000000 24.1142857 2.4509890
8 20.4000000 191.4000000 31.1000000 27.3428571 2.8925073
9 24.9000000 184.8000000 30.0000000 26.4000000 3.2861180
10 6.7000000 85.0000000 12.5000000 12.1428571 0.8265986
11 9.3000000 121.1000000 17.9000000 17.3000000 1.1524301
12 11.7000000 126.0000000 18.9000000 18.0000000 1.5567059
 uptake.CI.mean.0.95 uptake.var uptake.std.dev uptake.coef.var
1 7.5973914 67.4823810 8.2147660 0.2472200
2 10.1770660 121.0895238 11.0040685 0.3129967
3 9.5721056 107.1214286 10.3499482 0.2751600
4 7.7082281 69.4657143 8.3346094 0.2780852
5 9.5454101 106.5247619 10.3210834 0.3167364
6 10.4849394 128.5266667 11.3369602 0.3466960
7 5.9973540 42.0514286 6.4847073 0.2689156
8 7.0777105 58.5661905 7.6528551 0.2798850
9 8.0408410 75.5900000 8.6942510 0.3293277
10 2.0226140 4.7828571 2.1869744 0.1801038
11 2.8198950 9.2966667 3.0490436 0.1762453
12 3.8091222 16.9633333 4.1186567 0.2288143

32

Section 4: Managing data

Control

4.1 Importing data into R

4.2 Exporting data

33

4.1 Importing data into R (file Rcourse.5)

One of the first important things that you may have to do in an R session is
importing data files. In case of having few data, you may directly type them and store them
as a vector or matrix objects. In some of the GUIs, there is a data editors available from a
menu. But the most common way to load data in your session is to import them from
diverse file formats. The most common of those are the txt, csv, xls, xlsx, … R also admit
imports from Arff, DBF, SPSS, SAS, Minitab, Stata... A few, but important functions to
import these file formats (txt, csv) are present in the default packages. For the other
formats, you will need to install specific packages (gdata, xlsx, RODBC, Hmisc, foreign).
The general structure of the functions and main argument is:
read.fileformat(“filename.extension”). So let's try a few examples:
Import from txt the “Growth” data file provided to you in the course folder:

> dat1<-read.table(“Growth.txt”)
> head(dat1)

Import from csv:

> dat2<-read.csv2(“Growth.csv”,sep=”,”)
> head(dat2)

Here we introduce an important argument of these functions: “sep”.
In the csv, the symbol separating fields may vary between USA, Europe, as well as
different operating systems. The csv format is also different between USA and Europe, and
hence, the import function. In the USA, it is better to use read.csv() and in Europe
read.csv2().
csv is my preferred format for data import, but it is a bit tricky. You have to transform a xls
or xlsx file into csv through the Office command “save as”, where you can select among
several formats, among them, the csv. The problem is that this csv file will store in its
memory those cells were you have deleted data or text as if they had missing data. Then,
in your R session, those cells will be assigned an NA. These NAs might screw your further
analysis at some point. The solution is when you have a xls or xlsx file with your data
correctly organized, copy them and paste them in a new file of the same format. Then,
without altering their cell contents, save it as csv.

Import from xls:

> require(gdata)
> dat3<-read.xls(“Growth.xls”)
> head(dat3)

Import from xlsx:

> require(xlsx)
> dat4<-read.xlsx(“Growth.xlsx”,1)
> head(dat4)

In this case, it is necessary to indicate, with the argument “sheetIndex”, the page number
to import from the file.

34

Actually, with the function read.xls() from package gdata, you can also import xlsx format
(this was not possible with precursors of read.xls()):

> dat5<-read.xls(“Growth.xlsx”)
> head(dat5)

If the files to import are not located in your working directory, you will need to write the
whole directory path before the file name:

> dat<-(“/path/name of the file.extension”) #Linux and MacOS
> dat<-(“C:/path/name of the file.extension”) #Windows

It is also possible to import a file from the internet:

> dat<-read.table(file="http://www.mypage.com/file.txt")

4.2 Exporting data (file Rcourse.5)

The functions for exporting data are analogous to those for importing data, both in the
name and the file formats available. The exported files will go to the working directory. The
main function arguments are the name of the object to export and the exported file name
with the extension:

> write.table(iris,"iris.txt")
> write.csv2(iris,"iris.csv")
> require(gdata)
> write.fwf(iris,"iris.xls")
> require(xlsx)
> write.xlsx(iris,"iris.xlsx")

35

Section 5: Basic features of functions from graphics
package. Other graphical packages

36

Basic examples of graphical functions (file Rcourse.6)

In the package graphics, installed and loaded by default, there is already a great
variety of graphical functions. A nice overview can be seen with the demo of this package,
as we mentioned already in the section above. The most basic function is plot(). With this
one you can get already many different plots. But there are also other relevant functions:
hist(), barplot(), boxplot() (the one from our example above), pie(), persp(), contour().
These are all first level graphical functions. They create the general features of a specific
kind of plot: dispersion, histogram, bars, pie, three dimensional perspective, etc.
additionally, there are other functions of second level that are also very important, because
they are used to add secondary features to an already existing plot: mtext() (adds text in
the margins), legend() (adds a legend), points() (adds additional data), curve() (adds a
fitted curve), lines() (adds fitted lines), arrows() (adds arrows), polygon() (adds a polygon),
etc. This is a diagram of this way of structuring a plot code:

Remember that you can always check all the functions in a package in detail at the pdf
manual from the R project web site. And also by typing:

> help(package="graphics")

Now we are going to see just a few examples of the use of remarkable functions from this

37

group.
The plot() function already enables creating many different kinds of plots, like scatterplots,
lines, lines plus dots. This is a basic example of how to use this function:

> #Plot
> data<-read.csv2("SeriesN2.csv",sep=",")
> plot(data[,1],data[,2],type="b",pch=19,xlab="Time (h)",ylab="Rotifer
population",main="Series N2")

Here, an example with the box – whiskers function boxplot():

> #Boxplot
> data2<-read.csv2("FishSize.csv")
> boxplot(data2$Size~data2$Treatment,xlab="Diet",ylab="Fish size at maturity
(cm)")

38

And this, with the barplot() function, introducing now a second – level funtion, the function
legend():

> #Barplot
> Size<-tapply(data2$Size,data2$Treatment,mean)
> barplot(Size,col=c(1,2,3),xlab="Diet",ylab="Fish size at maturity
(cm)",axisnames=F)
> legend("topleft",c("Control","Supl 1","Supl
2"),pch=c(15,15,15),col=c(1,2,3),bty="n")

In order to select the colors for any graphical device, the argument “col” has a
numeric code, each number representing a specific color. But the colors could be specified
by a character stringl which is its own name. But for small differences in color it is difficult
to remember. You can check this with the function colors:

> colors()
 [1] "white" "aliceblue" "antiquewhite"
 [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
 [7] "antiquewhite4" "aquamarine" "aquamarine1"
 [10] "aquamarine2" "aquamarine3" "aquamarine4"
 [13] "azure" "azure1" "azure2"
 [16] "azure3" "azure4" "beige"
 [19] "bisque" "bisque1" "bisque2"
 [22] "bisque3" "bisque4" "black"
 [25] "blanchedalmond" "blue" "blue1"
 [28] "blue2" "blue3" "blue4"
 [31] "blueviolet" "brown" "brown1"
 [34] "brown2" "brown3" "brown4"
 [37] "burlywood" "burlywood1" "burlywood2"
 [40] "burlywood3" "burlywood4" "cadetblue"
 [43] "cadetblue1" "cadetblue2" "cadetblue3"

39

 [46] "cadetblue4" "chartreuse" "chartreuse1"
 [49] "chartreuse2" "chartreuse3" "chartreuse4"
 [52] "chocolate" "chocolate1" "chocolate2"
 [55] "chocolate3" "chocolate4" "coral"
 [58] "coral1" "coral2" "coral3"
 [61] "coral4" "cornflowerblue" "cornsilk"
 [64] "cornsilk1" "cornsilk2" "cornsilk3"
 [67] "cornsilk4" "cyan" "cyan1"
 [70] "cyan2" "cyan3" "cyan4"
 [73] "darkblue" "darkcyan" "darkgoldenrod"
 [76] "darkgoldenrod1" "darkgoldenrod2" "darkgoldenrod3"
 [79] "darkgoldenrod4" "darkgray" "darkgreen"
 [82] "darkgrey" "darkkhaki" "darkmagenta"
 [85] "darkolivegreen" "darkolivegreen1" "darkolivegreen2"
 [88] "darkolivegreen3" "darkolivegreen4" "darkorange"
 [91] "darkorange1" "darkorange2" "darkorange3"
 [94] "darkorange4" "darkorchid" "darkorchid1"
 [97] "darkorchid2" "darkorchid3" "darkorchid4"
[100] "darkred" "darksalmon" "darkseagreen"
[103] "darkseagreen1" "darkseagreen2" "darkseagreen3"
[106] "darkseagreen4" "darkslateblue" "darkslategray"
[109] "darkslategray1" "darkslategray2" "darkslategray3"
[112] "darkslategray4" "darkslategrey" "darkturquoise"
[115] "darkviolet" "deeppink" "deeppink1"
[118] "deeppink2" "deeppink3" "deeppink4"
[121] "deepskyblue" "deepskyblue1" "deepskyblue2"
[124] "deepskyblue3" "deepskyblue4" "dimgray"
[127] "dimgrey" "dodgerblue" "dodgerblue1"
[130] "dodgerblue2" "dodgerblue3" "dodgerblue4"
[133] "firebrick" "firebrick1" "firebrick2"
[136] "firebrick3" "firebrick4" "floralwhite"
[139] "forestgreen" "gainsboro" "ghostwhite"
[142] "gold" "gold1" "gold2"
[145] "gold3" "gold4" "goldenrod"
[148] "goldenrod1" "goldenrod2" "goldenrod3"
[151] "goldenrod4" "gray" "gray0"
[154] "gray1" "gray2" "gray3"
[157] "gray4" "gray5" "gray6"
[160] "gray7" "gray8" "gray9"
[163] "gray10" "gray11" "gray12"
[166] "gray13" "gray14" "gray15"
[169] "gray16" "gray17" "gray18"
[172] "gray19" "gray20" "gray21"
[175] "gray22" "gray23" "gray24"
[178] "gray25" "gray26" "gray27"
[181] "gray28" "gray29" "gray30"
[184] "gray31" "gray32" "gray33"
[187] "gray34" "gray35" "gray36"
[190] "gray37" "gray38" "gray39"
[193] "gray40" "gray41" "gray42"
[196] "gray43" "gray44" "gray45"
[199] "gray46" "gray47" "gray48"
[202] "gray49" "gray50" "gray51"
[205] "gray52" "gray53" "gray54"
[208] "gray55" "gray56" "gray57"
[211] "gray58" "gray59" "gray60"

40

[214] "gray61" "gray62" "gray63"
[217] "gray64" "gray65" "gray66"
[220] "gray67" "gray68" "gray69"
[223] "gray70" "gray71" "gray72"
[226] "gray73" "gray74" "gray75"
[229] "gray76" "gray77" "gray78"
[232] "gray79" "gray80" "gray81"
[235] "gray82" "gray83" "gray84"
[238] "gray85" "gray86" "gray87"
[241] "gray88" "gray89" "gray90"
[244] "gray91" "gray92" "gray93"
[247] "gray94" "gray95" "gray96"
[250] "gray97" "gray98" "gray99"
[253] "gray100" "green" "green1"
[256] "green2" "green3" "green4"
[259] "greenyellow" "grey" "grey0"
[262] "grey1" "grey2" "grey3"
[265] "grey4" "grey5" "grey6"
[268] "grey7" "grey8" "grey9"
[271] "grey10" "grey11" "grey12"
[274] "grey13" "grey14" "grey15"
[277] "grey16" "grey17" "grey18"
[280] "grey19" "grey20" "grey21"
[283] "grey22" "grey23" "grey24"
[286] "grey25" "grey26" "grey27"
[289] "grey28" "grey29" "grey30"
[292] "grey31" "grey32" "grey33"
[295] "grey34" "grey35" "grey36"
[298] "grey37" "grey38" "grey39"
[301] "grey40" "grey41" "grey42"
[304] "grey43" "grey44" "grey45"
[307] "grey46" "grey47" "grey48"
[310] "grey49" "grey50" "grey51"
[313] "grey52" "grey53" "grey54"
[316] "grey55" "grey56" "grey57"
[319] "grey58" "grey59" "grey60"
[322] "grey61" "grey62" "grey63"
[325] "grey64" "grey65" "grey66"
[328] "grey67" "grey68" "grey69"
[331] "grey70" "grey71" "grey72"
[334] "grey73" "grey74" "grey75"
[337] "grey76" "grey77" "grey78"
[340] "grey79" "grey80" "grey81"
[343] "grey82" "grey83" "grey84"
[346] "grey85" "grey86" "grey87"
[349] "grey88" "grey89" "grey90"
[352] "grey91" "grey92" "grey93"
[355] "grey94" "grey95" "grey96"
[358] "grey97" "grey98" "grey99"
[361] "grey100" "honeydew" "honeydew1"
[364] "honeydew2" "honeydew3" "honeydew4"
[367] "hotpink" "hotpink1" "hotpink2"
[370] "hotpink3" "hotpink4" "indianred"
[373] "indianred1" "indianred2" "indianred3"
[376] "indianred4" "ivory" "ivory1"
[379] "ivory2" "ivory3" "ivory4"

41

[382] "khaki" "khaki1" "khaki2"
[385] "khaki3" "khaki4" "lavender"
[388] "lavenderblush" "lavenderblush1" "lavenderblush2"
[391] "lavenderblush3" "lavenderblush4" "lawngreen"
[394] "lemonchiffon" "lemonchiffon1" "lemonchiffon2"
[397] "lemonchiffon3" "lemonchiffon4" "lightblue"
[400] "lightblue1" "lightblue2" "lightblue3"
[403] "lightblue4" "lightcoral" "lightcyan"
[406] "lightcyan1" "lightcyan2" "lightcyan3"
[409] "lightcyan4" "lightgoldenrod" "lightgoldenrod1"
[412] "lightgoldenrod2" "lightgoldenrod3" "lightgoldenrod4"
[415] "lightgoldenrodyellow" "lightgray" "lightgreen"
[418] "lightgrey" "lightpink" "lightpink1"
[421] "lightpink2" "lightpink3" "lightpink4"
[424] "lightsalmon" "lightsalmon1" "lightsalmon2"
[427] "lightsalmon3" "lightsalmon4" "lightseagreen"
[430] "lightskyblue" "lightskyblue1" "lightskyblue2"
[433] "lightskyblue3" "lightskyblue4" "lightslateblue"
[436] "lightslategray" "lightslategrey" "lightsteelblue"
[439] "lightsteelblue1" "lightsteelblue2" "lightsteelblue3"
[442] "lightsteelblue4" "lightyellow" "lightyellow1"
[445] "lightyellow2" "lightyellow3" "lightyellow4"
[448] "limegreen" "linen" "magenta"
[451] "magenta1" "magenta2" "magenta3"
[454] "magenta4" "maroon" "maroon1"
[457] "maroon2" "maroon3" "maroon4"
[460] "mediumaquamarine" "mediumblue" "mediumorchid"
[463] "mediumorchid1" "mediumorchid2" "mediumorchid3"
[466] "mediumorchid4" "mediumpurple" "mediumpurple1"
[469] "mediumpurple2" "mediumpurple3" "mediumpurple4"
[472] "mediumseagreen" "mediumslateblue" "mediumspringgreen"
[475] "mediumturquoise" "mediumvioletred" "midnightblue"
[478] "mintcream" "mistyrose" "mistyrose1"
[481] "mistyrose2" "mistyrose3" "mistyrose4"
[484] "moccasin" "navajowhite" "navajowhite1"
[487] "navajowhite2" "navajowhite3" "navajowhite4"
[490] "navy" "navyblue" "oldlace"
[493] "olivedrab" "olivedrab1" "olivedrab2"
[496] "olivedrab3" "olivedrab4" "orange"
[499] "orange1" "orange2" "orange3"
[502] "orange4" "orangered" "orangered1"
[505] "orangered2" "orangered3" "orangered4"
[508] "orchid" "orchid1" "orchid2"
[511] "orchid3" "orchid4" "palegoldenrod"
[514] "palegreen" "palegreen1" "palegreen2"
[517] "palegreen3" "palegreen4" "paleturquoise"
[520] "paleturquoise1" "paleturquoise2" "paleturquoise3"
[523] "paleturquoise4" "palevioletred" "palevioletred1"
[526] "palevioletred2" "palevioletred3" "palevioletred4"
[529] "papayawhip" "peachpuff" "peachpuff1"
[532] "peachpuff2" "peachpuff3" "peachpuff4"
[535] "peru" "pink" "pink1"
[538] "pink2" "pink3" "pink4"
[541] "plum" "plum1" "plum2"
[544] "plum3" "plum4" "powderblue"
[547] "purple" "purple1" "purple2"

42

[550] "purple3" "purple4" "red"
[553] "red1" "red2" "red3"
[556] "red4" "rosybrown" "rosybrown1"
[559] "rosybrown2" "rosybrown3" "rosybrown4"
[562] "royalblue" "royalblue1" "royalblue2"
[565] "royalblue3" "royalblue4" "saddlebrown"
[568] "salmon" "salmon1" "salmon2"
[571] "salmon3" "salmon4" "sandybrown"
[574] "seagreen" "seagreen1" "seagreen2"
[577] "seagreen3" "seagreen4" "seashell"
[580] "seashell1" "seashell2" "seashell3"
[583] "seashell4" "sienna" "sienna1"
[586] "sienna2" "sienna3" "sienna4"
[589] "skyblue" "skyblue1" "skyblue2"
[592] "skyblue3" "skyblue4" "slateblue"
[595] "slateblue1" "slateblue2" "slateblue3"
[598] "slateblue4" "slategray" "slategray1"
[601] "slategray2" "slategray3" "slategray4"
[604] "slategrey" "snow" "snow1"
[607] "snow2" "snow3" "snow4"
[610] "springgreen" "springgreen1" "springgreen2"
[613] "springgreen3" "springgreen4" "steelblue"
[616] "steelblue1" "steelblue2" "steelblue3"
[619] "steelblue4" "tan" "tan1"
[622] "tan2" "tan3" "tan4"
[625] "thistle" "thistle1" "thistle2"
[628] "thistle3" "thistle4" "tomato"
[631] "tomato1" "tomato2" "tomato3"
[634] "tomato4" "turquoise" "turquoise1"
[637] "turquoise2" "turquoise3" "turquoise4"
[640] "violet" "violetred" "violetred1"
[643] "violetred2" "violetred3" "violetred4"
[646] "wheat" "wheat1" "wheat2"
[649] "wheat3" "wheat4" "whitesmoke"
[652] "yellow" "yellow1" "yellow2"
[655] "yellow3" "yellow4" "yellowgreen"

Another typical plot are the histograms. We can plot, for instance, a simulated
normal distribution with a non – parametric density curve. We first create 1000 random
data drawn from a normal distribution with 0 mean and 1 standard deviation, then we fit a
gaussian kernel estimator of its density. We enlarge the plot margins with the argument
mar inside the function par() so that we can suitably fit the axis and text. Then we plot the
density and add a second axis for the density scale:

> data<-rnorm(1000)
> fit<-density(data)
> par(mar=c(6,6,6,6))
> hist(data,col="grey")
> par(new=TRUE)
> plot(fit$y,type="l",lwd=2,col="blue",xlab="",ylab="",xaxt="n",yaxt="n")
> axis(4)
> mtext("Normal density",4,3,at=0.2)

And here it is how the plot looks like:

43

There are also available functions to generate plots of surfaces, like contour() or
filled.contour(). The data files could be organize in different ways. In this example, rows
are oriented east to west, and columns south to north, so cells are contiguous topological
points. The numerical values of each cell correspond with a level in the scale.

> head(volcano)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 100 100 101 101 101 101 101 100 100 100 101 101
[2,] 101 101 102 102 102 102 102 101 101 101 102 102
[3,] 102 102 103 103 103 103 103 102 102 102 103 103
[4,] 103 103 104 104 104 104 104 103 103 103 103 104
[5,] 104 104 105 105 105 105 105 104 104 103 104 104
[6,] 105 105 105 106 106 106 106 105 105 104 104 105
 [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23]
[1,] 102 102 102 102 103 104 103 102 101 101 102
[2,] 103 103 103 103 104 105 104 103 102 102 103
[3,] 104 104 104 104 105 106 105 104 104 105 106
[4,] 104 104 105 105 106 107 106 106 106 107 108
[5,] 105 105 105 106 107 108 108 108 109 110 112
[6,] 105 106 106 107 109 110 110 112 113 115 116
 [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34]
[1,] 103 104 104 105 107 107 107 108 108 110 110
[2,] 105 106 106 107 109 110 110 110 110 111 112
[3,] 107 108 110 111 113 114 115 114 115 116 118
[4,] 110 111 114 117 118 117 119 120 121 122 124
[5,] 114 115 118 121 122 121 123 128 131 129 130
[6,] 118 119 121 124 126 126 129 134 137 137 136
 [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45]

44

[1,] 110 110 110 110 110 110 108 108 108 107 107
[2,] 113 114 116 115 114 112 110 110 110 109 108
[3,] 119 119 121 121 120 118 116 114 112 111 110
[4,] 125 126 127 127 126 124 122 120 117 116 113
[5,] 131 131 132 132 131 130 128 126 122 119 115
[6,] 136 135 136 136 136 135 133 129 126 122 118
 [,46] [,47] [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56]
[1,] 108 108 108 108 108 107 107 107 107 106 106
[2,] 109 109 109 109 108 108 108 108 107 107 106
[3,] 110 110 110 109 109 109 109 108 108 107 107
[4,] 111 110 110 110 109 109 109 109 108 108 107
[5,] 114 112 110 110 110 110 110 109 109 108 107
[6,] 116 115 113 111 110 110 110 110 109 108 108
 [,57] [,58] [,59] [,60] [,61]
[1,] 105 105 104 104 103
[2,] 106 105 105 104 104
[3,] 106 106 105 105 104
[4,] 107 106 106 105 105
[5,] 107 107 106 106 105
[6,] 108 107 107 106 106
> filled.contour(volcano,color.palet=terrain.colors)

There are as well many functions that can generate 3D plots. Among them, persp()
is present in the graphics package:

> z<-2*volcano
> x<-10*(1:nrow(z))
> y<-10*(1:ncol(z))
> par(bg="slategray")
> persp(x,y,z,theta=135,phi=30,col="green3",scale=FALSE,ltheta=-

45

120,shade=0.75,border= NA,box=FALSE)

A more complicated example (file Rcourse.7)

Now, we will edit a complex plot of a predator – prey time series in continuous
culture. The predator is a rotifer and the prey a microalgae. In the plot we also represent
the dilution rate of the system, the rotifer egg production and the level of defense
(aggregate size) of the algae. These details are unimportant. Here, you have to learn
particularly the following details: how we can add deviation bars with a specific function.
How to add several data series. How to add extra axis and margin test, how to add a
legend, etc. We start right after loading the data and defining a user – defined error bar
function. So the first thing we do is to use the function par(), which is a function for general
format issues of the plot area. Here we set the value for the “outer margins” of the plot,
with the argument oma, the margins of the plot, with mar, and the possibility of plotting
outside the plot area with xpd:

> par(oma=c(2,4,2,11),mar=c(5.1,4.1,6,2.1),xpd=TRUE)

In a second step, we introduce the rotifer data and its standard deviation bar:

> plot(tm,N2[,"Brach"],pch=19,xlab="Time (days)",ylab="",ylim=c(0,20))
> error.bar(tm,N2[,"Brach"],N2[,"SdBrach"])

Then, we create (with the function spline()) and plot (with the function points()) a non –
parametric regression, with a spline method. This will show a smoothed curve of the data:

> spl1<-spline(tm,N2[,"Brach"],n=20*length(N2))
> points(spl1$x,spl1$y,type="l",lwd=2)

46

In the next step, we add text in the margin of the rotifer axis, with the function mtext(). Note
how we use the function expression() for writing in mathematical notation and the function
paste() to paste different text elements:

> mtext(expression(paste("Rotifers ","(ind mL"^"-1",")")),2,2,at=10)

Now, we need to overlay a second plot with the same structure as the previous, but
showing the microalgae data. We can not plotting functions of first level together. They
would not overlay automatically, rather, the actual would delete the previous. In order to
overlay them, we need again to indicate, with the function par() that we are going to create
a new plot over the previous one:

> par(new=TRUE)

The rest of the code is simply a repetition of this same structure in order to add all the new
components. But note the use of the function axis() in order to add supplementary axis:

> plot(tm,N2[,"Scen"],pch=19,xlab="",ylab="",yaxt="n")
> error.bar(tm,N2[,"Scen"],N2[,"SdScen"])
> spl2<-spline(tm,N2[,"Scen"],n=20*length(N2))
> points(spl2$x,spl2$y,type="l",lty=2,lwd=2,col="green")
> axis(2,line=4)
> mtext(expression(paste("Scenedesmus (cells ",10^6,"mL"^"-1",")")),2,6,at=0.25)
> par(new=TRUE)
> spl3<-spline(tm,N2[,"Eggs"],n=20*length(N2))
> plot(spl3$x,spl3$y,type="l",lty=3,lwd=1,xlab="",ylab="",yaxt="n",ylim=c(0,0.35))
> axis(4)
> mtext(expression(paste("Eggs (ind"^"-1",")")),4,3,at=0.175)
> par(new=TRUE)
> spl4<-spline(tm,N2[,"Def"],n=20*length(N2))
> plot(spl4$x,spl4$y,type="l",lty=4,lwd=1,xlab="",ylab="",yaxt="n",ylim=c(0,6))
> axis(4,line=5)
> mtext(expression(paste("Level of defense (average cells aggregate"^"-1",")")),4,7,at=3)
> par(new=TRUE)
> spl5<-spline(tm,D[,"N2"],n=20*length(D))
> plot(spl5$x,spl5$y,type="l",lty=5,lwd=1,xlab="",ylab="",xaxt="n",yaxt="n",ylim=c(0,2))
> axis(4,line=9)
> mtext(expression(paste("Dilution rate","(day"^"-1",")")),4,11,at=1)

And last, we add a legend to this plot, with the second level function legend():

> legend(x=17,y=2.7,c("Scenedesmus","Brachionus","Eggs","Defense","Dilution"),
lty=c(2,1,3,4,5),col=c(“green”,”red”,”black”,”black”,”black”),lwd=c(2,2,1,1,1),bty=”n”)

And this is how the final plot looks like:

47

If we wanted to export the plot with a specific format (file Rcourse.7)

The only thing we need is to use a function for the desired format to export, before
the code of the plot, and, after the code of the plot, close the output with the dev.off()

48

* There are many possibilities for plotting in R. It is impossible to give a general
overview during this course. There are many basic plot formats, plots in 3D, maps.
Some packages like lattice, ggplot... contain only graphical functions that are widely
used. In the web are many galleries with examples of R plots. You could check, for
instance, the following ones:
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
http://zoonek2.free.fr/UNIX/48_R/03.html
http://en.wikibooks.org/wiki/R_Programming/Graphics

http://en.wikibooks.org/wiki/R_Programming/Graphics
http://zoonek2.free.fr/UNIX/48_R/03.html
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery

function. For the plot above:

pdf("Myplot1.pdf")
par(oma=c(2,4,2,11),mar=c(5.1,4.1,6,2.1),xpd=TRUE)
plot(tm,N2[,"Brach"],pch=19,xlab="Time (days)",ylab="",ylim=c(0,20))
error.bar(tm,N2[,"Brach"],N2[,"SdBrach"])
spl1<-spline(tm,N2[,"Brach"],n=20*length(N2))
points(spl1$x,spl1$y,type="l",lwd=2,col="red")
mtext(expression(paste("Rotifers (ind mL"^"-1",")")),2,2,at=10)
par(new=TRUE)
plot(tm,N2[,"Scen"],pch=19,xlab="",ylab="",yaxt="n")
error.bar(tm,N2[,"Scen"],N2[,"SdScen"])
spl2<-spline(tm,N2[,"Scen"],n=20*length(N2))
points(spl2$x,spl2$y,type="l",lty=2,lwd=2,col="green")
axis(2,line=4)
mtext(expression(paste("Scenedesmus (cells ",10^6,"mL"^"-1",")")),2,6,at=0.25)
par(new=TRUE)
spl3<-spline(tm,N2[,"Eggs"],n=20*length(N2))
plot(spl3$x,spl3$y,type="l",lty=3,lwd=1,xlab="",ylab="",yaxt="n",ylim=c(0,0.35))
axis(4)
mtext(expression(paste("Eggs (ind"^"-1",")")),4,3,at=0.175)
par(new=TRUE)
spl4<-spline(tm,N2[,"Def"],n=20*length(N2))
plot(spl4$x,spl4$y,type="l",lty=4,lwd=1,xlab="",ylab="",yaxt="n",ylim=c(0,6))
axis(4,line=5)
mtext(expression(paste("Level of defense (average cells aggregate"^"-1",")")),4,7,at=3)
par(new=TRUE)
spl5<-spline(tm,D[,"N2"],n=20*length(D))
plot(spl5$x,spl5$y,type="l",lty=5,lwd=1,xlab="",ylab="",xaxt="n",yaxt="n",ylim=c(0,2))
axis(4,line=9)
mtext(expression(paste("Dilution rate","(day"^"-1",")")),4,11,at=1)
legend(x=17,y=2.7,c("Scenedesmus","Brachionus","Eggs","Defense","Dilution"),lty=c(2,1,3,4
,5),lwd=c(2,2,1,1,1),col=c("green","red","black","black","black"),bty="n")
dev.off()

Now, the pdf file “Myplot1” should appear in your working directory. Other format options
are those of jpeg(), tiff(), png(), bmp(). You can play with the size and resolution of the
plots. Just check the help for these functions.

Other graphic libraries

As mentioned earlier, the possibilities for plotting with R are almost nevere ending.
Here, I show a few example of other graphic libraries that contain demos (the lattice library
is installed by default, but not loaded, the others, you need to install them):

> require(lattice)
> demo(lattice)

> require(plotrix)
> demo(plotrix)

> require(rgl)
> demo(rgl)

49

Bibliography

For a general introduction to R:

- The R book. Michael J. Crawley. John Wiley & Sons. 2012.

- Beginning R. M. Gardener. Wiley & Sons, 2012.

- The art of R programming: A tour of statistical software design. Norman Matloff. No
Starch Press. 2011.

- Learning R. Richard Cotton. O'Reilly Media. 2013.

- R in a nutshell: A Desktop quick reference J.R. Adler. O'Reilly Media. 2012.

For more advanced programming:

- Programming with R. J.M. Chanbers. Springer 2008.

- Guide to programming and algorithms using R. Özgür Ergül. Springer 2013.

For graphics:

- R Graphics. Paul Murrell. Chapman and Hall, 2005.

- Gráficos estadísticos y mapas con R. Cástor Guisande, Antonio Vaamonde Liste.
Díaz de Santos. 2013.

50

Aldo Barreiro Felpeto, June 2015

1

Table of contents

Section 1: Descriptive statistics and regression 3

1.1 Descriptive statistics and distributions 4

1.2 Linear regression 13

1.3 Non linear regression 23

1.4 Non – parametric regression 32

Section 2: Contrast of hypothesis 37

2.1 Main frameworks for hypothesis testing 38

2.2 Parametric and non parametric tests for hypothesis testing 44

Section 3: GLM 51

3.1 General linear model I 52

3.2 General linear model II 72

3.3 General Linear Model III 75

Section 4: Introduction to GLZ, GAM and Meta-Analysis 82

4.1 Introduction to Generalized Linear Models 83

4.2 Introduction to Generalized Additive Models 91

4.3 Introduction to Meta – Analysis 99

Bibliography 106

2

Section 1: Descriptive statistics and regression

Contents

1.1 Descriptive statistics and distributions

1.2 Linear regression

1.3 Non linear regression

1.4 Non – parametric regression

3

1.1 Descriptive statistics and distributions

Descriptive statistics (file R.S1.1)

Descriptive statistics are summary values, mainly of univariate or bivariate data, that
provide information about the central tendency, dispersion, range of variation, the
relationship between variables, etc.

Basic measures of central tendency

We may start with the mode, which is the most frequent value of a variable. There is no
specific function for the mode in R default packages. We can easily program it, but, in this
course we will use the function mlv() from the package modeest. This function has different
methods for the estimate of the mode. In this example, we are using the simplest one,
which is returning the most frequent value from a variable (method “mfv”, which stands for
“most frequent value”).

> require(modeest)
> x<-c(3,6,7,4,3,2,5,4,3,3,7,8,3)
> mlv(x,method="mfv")
Mode (most likely value): 3
Bickel's modal skewness: 0.4615385
Call: mlv.default(x = x, method = "mfv")

The mode is not always a good measure of central tendency, since it could be positioned
far from the majority of data. In addition, sometimes, the data have more than one mode.

The median is the value in the “middle”. It has the same number of values to its “left” and
to its “right”. There is a function in the stats package. By default, it does not calculate the
median if there are NAs in your data:

> y<-c(3,6,NA,7,4,3,2,5,4,3,NA,3,7,8,3)
> median(y)
[1] NA
> median(y,na.rm=TRUE)
[1] 4

it is very informative as a measure of central tendency, since it is not much affected by
outliers, as it is the mean.

The mean is one of the more used descriptive measures of data. It has several definitions
in mathematics or statistics, depending on the context. It could be defined as the central
value of a series of values, when summed up and divided by the total number of values, or
the expected value, based in a distribution of probability. Its problem, as a measure of
central tendency, is that it could be severely affected by outliers, usually whit small data
sets. This is the arithmetic mean in R:

> mean(y,na.rm=TRUE)
[1] 4.461538

4

A sometimes useful argument of this function is “trim”, which indicates the fraction (from 0
to 0.5) of observations to be trimmed from each end of the variable. This could be useful to
eliminate outliers. The mean would be then called “truncated mean”.
There are other kinds of mean, among them the geometric mean and the harmonic mean.
Their usefulness depends on the kind of data. The geometric mean is useful for those
variables that are interpreted according to their product, not their sum. For instance, a
growth rate. This is the formula:

As an example, imagine a microorganism that growths at a daily rate of 0.7 during one day
of your experiment. Imagine that during the second day it would grow at a rate of 0.2. So
the mean of the growth during these two days is not interpretable as (0.7 + 0.2) / 2 = 0.45.
Rather, we may use the geometric mean, which is the ith root of the product of i values,
which is the same as the product of i values rose to the 1/i power. In this specific example:
(0.7 x 0.2)^(1/2) = 0.37. In R, there is no built – in function to compute this mean in the
default packages. It is, obviously, very easy to program as a user defined function. But
here, we are going to use the built – in function from package psych:

> require(psych)
> geometric.mean(y)
[1] 4.096351

The harmonic mean is useful for the calculation of averages of rates. It is the inverse
average of the inverted values:

It is also very easy to program, but there is a built – in function as well in the psych
package:

> require(psych)
> z<-c(0.6,0.5,0.6,1.12,0.2,0.4,0.7)
> harmonic.mean(z)
[1] 0.461901

Basic measures of dispersion

The variance expresses the spread of the data with respect to the mean. It is the sum of
the squared differences between each value and the mean. There is a very simple function
to compute it in the default package stats:

> var(z)
[1] 0.08158095

5

The problem of the variance is that it is squared with respect to the actual values of the
variable. If we want to use a measure of dispersion in the same units as the original
variable, we will need to use the standard deviation, which is the squared root of the
variance. The R function is:

> sd(z)
[1] 0.2856238

Sometimes, the standard deviation is computed averaged by n – 1 data, in order to reduce
the bias. But the R function does not use this feature.
Another measure of dispersion, the coefficient of variation, is useful when we want to
compare variables measured in different scales. It is the standard deviation normalized by
the mean. It is very easy to calculate simply dividing the standard deviation by the mean.
But there is a function as well, in the R package raster:

> require(raster)
> cv(x)
[1] 43.51527
> cv(z)
[1] 48.52831

The range is the whole range of distribution of our data. So the output from the function
are the minimum and maximum of our variable:

> range(z)
[1] 0.20 1.12

Another interesting measure of dispersion is the interquartile range, which is the difference
between the first and the third quartile. So we are excluding the variable values that are
smaller than the first quartile (the smaller 25% of the data) and greater than the third
quartile (the largest 25% of data). The R function is IQR():

> a<-rnorm(1000)
> IQR(a)
[1] 1.380011

On page 31 from the pdf of week I (script Rcourse.4) there is an example of a function,
stat.desc(), from package “pastecs”, that returns at once the most common measures of
descriptive statistics.

Correlation coefficients

The correlation coefficients are a measure of the strength and direction of the association
or dependence (usually linear) between two variables. It is always important to remind that
statistic correlation does not mean causation.
We may differentiate between two main groups: parametric coefficients and non –
parametric coefficients. As we will show later in this course, we use parametric methods
when it is possible to assume that our data follow certain statistical distribution, often the
Normal distribution. Any distribution is defined by a mathematical function with parameters.
The non – parametric methods are used when we can not assume that our data follow a

6

specific distribution, either because they do not significantly fit to any distribution or
because we have so few data that it is not reliable to test the assumption.
So, the parametric correlation coefficients are used when our data follow a Normal
distribution. The most famous one is the Pearson's coefficient (r). It measures the strength
of the linear dependence among two variables. It is defined as the covariance between two
variables divided by the product of their standard deviations:

Its range of possible values goes from -1 to 1. The sign is positive when the relationship is
positive and negative when it is negative. The closer the absolute value to 1 the stronger
the relationship. Relationship here means statistical dependence. A value of 0 means no
relationship, so both variables would be independent. There are statistical tests that
calculate the significance of this coefficient, but we are not going to take care of this details
now.
Among the most important non – parametric coefficients are the Spearman's coefficient (ρ)
and Kendall's coefficient (τ). Both are calculated based in the ranks of the paired data of
the two variables. The closer the rank of two paired values, the stronger the correlation.
Their range of possible values is also between -1 and 1, and the interpretation the same
as with Pearson's coefficient. There also exist statistical tests for the estimate of their
significance, but we are going to skip this point now. There are two different kinds of
Kendall τ, named a and b. Their use depends on the existence of ties in the ranks, but we
are not going to get into this now. Kendall coefficient usually performs better for ordinal
variables.
The main difference between these non – parametric coefficients and Pearson's coefficient
is that that the relationship between the variables does not have to be necessarily linear. It
is only assumed to be monotonic. We are going to see an example of this at the same time
that we calculate these coefficients with R.
We are going to create two kinds of relationships between three variables, one is going to
be linear and the other non – linear, but monotonic, and see what these coefficients tell us.
First, we create 30 random numbers, withdrawn from a normal distribution with average 0
and standard deviation 1. These are going to be our x variable:

> x<-rnorm(30)

Now, we create another variable, y1, that is going to be linearly related with x, but adding
some noise:

> y1<-(0.7*x+0.3)+rnorm(30,0,0.25)

As you have seen, in order to create y1, we used a linear function applied to the 30 values
of x and then added some noise from a normal distribution with average 0 and standard
deviation 0.25. If we plot x against y1, this is how the relationship looks like:

> plot(x,y1)

7

And now, in the same way, we are going to create a new variable y2, that is non linearly
related wit x. So we will use a sigmoid function, the logistic, and add some noise as well:

> y2<-(1/(1+exp(-2.5*x)))+rnorm(30,0,0.05)
> plot(x,y2)

And now, we are going to calculate the correlation coefficients described above for these
two relationships. In R, we have the function cor.test() in the default package stats, that
can calculate all the three coefficients, just by modifying the value of the argument
“method”. For the method “kendall”, this R function already adjusts the calculations
depending on the existence of ties in the ranks.
These are the coefficients between x and y1, which “skeleton” is a linear relationship:

> cor.test(x,y1,method="pearson")

Pearson's product-moment correlation

data: x and y1
t = 13.513, df = 28, p-value = 8.615e-14
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.8590753 0.9670205
sample estimates:

8

 cor
0.9311539

> cor.test(x,y1,method="spearman")

Spearman's rank correlation rho

data: x and y1
S = 266, p-value = 1.806e-08
alternative hypothesis: true rho is not equal to 0
sample estimates:
 rho
0.9408231

> cor.test(x,y1,method="kendall")

Kendall's rank correlation tau

data: x and y1
T = 392, p-value = 3.173e-13
alternative hypothesis: true tau is not equal to 0
sample estimates:
 tau
0.8022989

And these are the coefficients between x and y2, which “skeleton” is a sigmoidal
relationship:

> cor.test(x,y2,method="pearson")

Pearson's product-moment correlation

data: x and y2
t = 19.8152, df = 28, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9293590 0.9839337
sample estimates:
 cor
0.9661443

> cor.test(x,y2,method="spearman")

Spearman's rank correlation rho

data: x and y2
S = 74, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
 rho
0.9835373

> cor.test(x,y2,method="kendall")

Kendall's rank correlation tau

9

data: x and y2
T = 417, p-value = 1.11e-15
alternative hypothesis: true tau is not equal to 0
sample estimates:
 tau
0.9172414

So, as we can see, the spearman coefficient always finds the relationship stronger, by little
in the case of the linear relationship. But in the sigmoidal relationship, Spearman's
definitely indicates stronger relationship than Pearson's coefficient. The value of Pearson's
coefficient is still strong for the sigmoidal relationship, because the slope is sharp (so along
most of its range, the relationship is linear) and the noise is very low. Kendall's coefficient
always indicates the lower strength of correlation. As we mentioned earlier, this coefficient
is more suitable for ordinal variables.

*There exist as well measures of dependence for qualitative variables and tests for this
dependence, but due to our limited time budget, I am going to mention them briefly: The Ф
(phi) coefficient is the main measure of dependence for qualitative variables. In R there is
the function phi() in package psych. Its multivariate version is Cramer's V coefficient (R
function cramersV() from package lsr). Tests for independence can be the Chi – square
test for polytomous variables (chisq.test() function) and the Yates test for dichotomous
variables (chisq.test() function with argument “correct” set to TRUE). All these measures
and tests with qualitative variables are calculated from their frequencies in contingency
tables (we will see them in session 3).

Basic features of working with distributions (file R.S1.2)

The distribution of a variable, in statistics, is often used in the context of the frequency of
its values, or the probability of obtaining an outcome from a specific experiment. An
outcome is a specific value of some variable, defined from a probabilistic point of view.
We will use the features of R related with distributions, mainly, for these purposes:
estimating the goodness of fit of data to specific distributions, obtaining the probability of a
value under the assumption of certain probability distribution, and the generation of
random numbers.
Each distribution has its own features: Some of them could be specific for discrete or
continuous variables. They may have only positive values, negative or both. They can be
symmetric or skewed, have different degrees of kurtosis, etc. Each distribution is defined
by a different mathematical function, with its specific parameters.

Generating random numbers

We have already seen how to generate random numbers drawn from the Normal (or
Gaussian) distribution with the function rnorm(). The parameters of the Normal distribution
function are the mean and the standard deviation. The default values that rnorm() takes for
these parameters are, respectively, 0 and 1.
In R, there are equivalent functions for many other statistical distributions, a few ones that
are commonly used are: rbinom() (binomial), rchisq() (chi – squared), rgamma() (Gamma),
rlnorm() (log – normal), rpois() (Poisson) and many others...

10

Let's see an example of random number generation from a Poisson distribution:
The Poisson distribution function has one single parameter, called lambda (λ), which is
equal to both its mean and variance. It is a discrete distribution, usually for count data. Its
values have to be always positive.

> p<-rpois(1000,lambda=10)
> hist(p)

Calculating probabilities under specific distributions

Another application that we might want to use is to calculate the probability of a specific
value under the assumption of certain probability distribution. This is for instance, what we
do in a typical hypothesis test. We obtain the value of a contrast statistic (Fischer's F,
Student's t, etc.) and we calculate its probability assuming that distribution. These
calculations are often integrated within the code of built – in functions of statistical tests, so
we obtain the probability value already from the function output. But, in some cases, we
might need to calculate the probability directly, because we do not have a built – in
function that applies a specific test, and then, we have to do it “by hand”.
As an example, there is a common application of the likelihood ratio test which consist in
testing the significance of the difference between the likelihood of two fitted statistical
models (forget now about what fitting models and likelihood mean, we will talk about it in
the forthcoming sections). For models fitted with built – in functions like lm(), glm(), and
others, we can apply the likelihood ratio test directly with the function anova(), and obtain a
probability value from the output. But, in some cases, we might code models with our own
user – defined functions. In such a case, the function anova() is not ready to “recognize”
the model object, and hence, we might need to calculate our likelihood, and do the test by
hand. For instance, imagine that we are comparing two models, “model 1” with a likelihood
value of -13275 and “model 2” with a value of -11923. The one with greater likelihood
(model 2) is supposed to be better, but because it has one more parameter, we would
prefer the simpler “model 1” if this difference in likelihood is not significant. In order to
know it, we have to apply a likelihood ratio test, which consist in calculating the probability
of the test statistic called D, under a chi-squared distribution. So, in this case, in R, D is
calculated as follows (do not think about the details of the formula now):

> D<--2*log(-13275.43/-11923)
> D

11

[1] -0.2148913

Now that we have the value of D, we calculate its chi – squared probability with 1 degree
of freedom. We have set the argument “lower.tail=TRUE” because the difference between
the likelihood values could be negative or positive. It would be significant either a highly
positive value of D or a highly negative one.

> pchisq(D,1,lower.tail=T)
[1] 0

The probability is lower than 0.05, so we consider the difference significant, so in this case
we would choose model 2.
Obviously, there are functions equivalent to pchisq() for many other statistical distributions.

Fitting data to distributions and goodness of fit

In order to fit our data to a specific distribution, we simply have to estimate the parameters
of the that distribution function from our data.
A goodness of fit test would contrast the empirical frequencies with the theoretical ones.
There are different tests that we can apply. For instance, we have the Shapiro – Wilks test
that is only used for the test of Normality. But there is also the Kolmogorov – Smirnov test,
that could be used for a Normal distribution, or also other kinds of distribution.
We are going to see a single example of these things. Estimate the parameter values
needed to define a Gamma distribution and then perform a goodness of fit test for this
same distribution. We are going to use the artificial data from a normal distribution. The
Gamma distribution is continuous and has always positive values.

> rnorm(100,50,15)
> hist(x)

This is the real, empiric distribution of our data. Now, if we want to fit them to a Gamma
distribution, we need to estimate the two parameters of the Gamma function, the “shape”
parameter, and the “rate” parameter.
There are many ways to estimate this parameters in R. For now, we are going to choose
the simplest, the most convenient. This consists in using the function fitdistr(), from the
default package MASS. This function estimates the parameters by maximum likelihood for

12

univariate distributions. First, we have to load the package MASS, because, although it is
installed by default, it is not loaded by default.

> require(MASS)
> fitdistr(x,"gamma")
 shape rate
 8.97730117 0.18328807
 (1.24648000) (0.02617341)
Mensajes de aviso perdidos
1: In densfun(x, parm[1], parm[2], ...) : Se han producido NaNs
2: In densfun(x, parm[1], parm[2], ...) : Se han producido NaNs

The values provided are the estimates, and within parenthesis, the standard error of these
estimates. The production of NaNs during the calculations does not seem to be good...
Now, we are going to apply a goodness of fit test in order to check if the empirical
frequencies meet the theoretical frequencies for this kind of distribution. If so, our
parameter estimates would make sense. For this purpose, we will use the Kolmogorov –
Smirnov test with the method for Gamma probability. The null hypothesis is that the data
actually fit the gamma distribution:

> ks.test(x,"pgamma",8.98,0.183)

One-sample Kolmogorov-Smirnov test

data: x
D = 0.0808, p-value = 0.5313
alternative hypothesis: two-sided

The probability value (p – value) is greater than 0.05, so there is no evidence to reject the
null hypothesis, and so we are allowed to say that these data fit a Gamma distribution. It
might appear curious that data drawn from a Normal distribution fit another different
distribution. But this is possible, since statistical tests always deal with probabilities, and,
additionally, there are not perfect. In this case, it might happen that the two distributions
are not that different, and the sample size is a bit small.

1.2 Linear regression (file R.S1.3)

Introduction

Fitting data to a linear function is one of the most frequently performed tasks in statistics. It
is the basis of simple and multiple linear regression and the linear model, that we will see
in the forthcoming sections. We have an independent variable, or predictor, usually
denoted as x, and a dependent variable or response variable, usually denoted as y. The
basic functional form of a linear model is y = ax + b and fitting this model to our data
consist in finding the best estimates for the two parameters from this model: the intercept
b and the slope a. This estimates could be performed with different methods. But in this
case we are going to use only the most common one: minimization of residual squared
sum. Here is a short explanation of this method:
First, we have to explain what the residuals are. Imagine we have an empiric relationship

13

between two variables, like this one:

If we fit a linear function to this relationship, we will have theoretical values of the y
variable, constituting a straight line. These theoretical values of y correspond to each real
value of x. In this way:

Now, the differences between the real values of y and the theoretical or fitted values of y
are called the residuals of the model. These are represented in this plot by the
discontinuous lines:

So the method of minimization of residuals squared sum consist in finding parameter

14

estimates that minimize the value of the sum of the squared values of the residuals. The
squares are applied because we need a positive value, and some of the residual values
will be negative (those of points laying below the line). The minimum value of this sum is
found by iterating a matrix algorithm that calculates the residuals for different fitted values
of y calculated from iterated values of the two parameters of the linear function (a and b).
An important property of the residuals is that their sum is always equal to 0.

Example of fit

Now, let's proceed with an example of a linear fit. This technique is often called “linear
regression”, because one of the first data sets that was applied to develop its foundations
was the height of adult humans across generations. The parents had smaller heights than
their offspring, so the fitted line showed the “regressive” way of human height from the
present to the past.
For our example, we are going to use the data from iris, that offers the possibility of
comparing different morphological measures of those flowers.
First, we load the data and we can have a look at all the possible pair – wise combinations
of the variables. This can be done simply with the plot() function applied to the whole data
frame:

> data(iris)
> plot(iris)

This plot is a very good summary plot for data exploration. Note the symmetry with respect
to the diagonal. Thinking about which variables we could use for our example, it looks like
only petal length versus petal width follows the same pattern for all the three species. And
it looks pretty linear.

15

So, we start defining the model. The main function in R for a linear model is lm(). The first
argument of this function is the model formula. In this formula you only have to indicate the
dependent and the independent variable. The argument data is useful in order to avoid
writing the “$” to locate the variables:

> model<-lm(Petal.Width~Petal.Length,data=iris)

So the way the formula is written, it will be interpreted by R as “Petal width predicted by
petal length”. With the function summary() we can access to the main results of the model
fit:

> summary(model)

Call:
lm(formula = Petal.Width ~ Petal.Length, data = iris)

Residuals:
 Min 1Q Median 3Q Max
-0.56515 -0.12358 -0.01898 0.13288 0.64272

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***
Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2065 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

Interpretation of this output

So this summary function shows us several things that are stored in the model of the
object that we called “model”. These things are shown because they are considered the
most important information. First, there is a reminder of the formula of the model. Then,
some descriptive statistics about the model residuals (minimum, maximum and quartiles).
Below, the better estimates for the coefficients of the linear function, as we know,
calculated by minimization of the sum of squared residuals. Besides the estimate, it is also
shown the standard error of the estimate, and the statistical significance of the estimates
with the Student's t as contrast statistic. At the end are shown the residual standard error,
with the degrees of freedom for the error of the model. This residual standard error is the
value that is minimized by iteration, as we explained above. But, do not be mistaken, it is
not the sum of the residuals, that, as we mentioned above, is always = 0. This residual
standard error, is interpreted as the unexplained variance. Because it is calculated as the
sum of all the squared differences between a real value and the expected theoretical
value. So if you remember how the variance is calculated, this is strongly related.
Do you know what degrees of freedom mean? They have interpretations expressed in a
different way, depending if we are in a context of physics or statistics, but in essence, they
are equivalent. They are the number of independent dimensions that are available in order
to estimate a parameter. The residuals are an estimate of the error of the model. And, as

16

we said above, they sum is equal to 0. In this example, we have 150 data. So we will have
150 residuals. Imagine if we knew the values of 149 residuals. Then, we necessarily know
as well the value of the one that is missing, because their total sum must be 0. This means
that we have only 149 “free” dimensions. 149 residuals that could take any value, but an
additional one is constrained to make the total sum equal to 0.
But the degrees of freedom for the error are 148, not 149. This is because what we have
explained above applies to the degrees of freedom of an error estimate. But we are in a
slightly more complicated case. Here we are estimating, besides the error, two model
parameters (a and b, the slope and the intercept). Then, the other reduction in degrees of
freedom comes from the estimation of the fitted or theoretical values of the dependent
variable. For this calculation, we need the values of the independent variable and two
parameters. The values of the independent variable are known, they are empiric. Then, the
value of one parameter is also constrained by the value of the other parameter. The
constrain is related with the fitted values of the dependent variable. Because, in this
situation, we know the values of the residuals and the values of the independent variable,
the fitted values of the dependent variable have to be in accordance with those previous
values. And for its calculation we have only two elements remaining: the two parameters.
And, when we know the value of one of them, the value of the other is constrained to yield
the necessary values of the fitted dependent variable.
So we could say that we have 149 (150 data – 1) degrees of freedom for the error and 1
degree of freedom for the model (2 parameters – 1). The total degrees of freedom are
hence 148.
The last things that this summary provides are the R2 coefficient of determination and its
statistical significance estimated from the F statistic. This coefficient, for models in general,
indicates how well the data fit the model, as a sort of the proportion of variance that is
explained by the model. But this coefficient is not the same as the squared value of the
Pearson's correlation coefficient. This is its most general formula:

The numerator is the residual sum of squares, so the varaince due to each individual data,
not explained by the model. The denominator is the total variance. The difference between
these two quantities is the variance explained by the linear regression model. So, if the
model explains a large amount of variance, the whole quotient has a low value. And if this
value is substracted to 1, the coefficient would have a value close to 1.
The summary shows two values of this coefficient. The “adjusted” value is a correction
performed in order to take into account the number of parameters, related with the number
of explanatory variables included in the model. In our case we have only one explanatory
variable, our independent variable. But if we had more (like in a multiple regression) each
explanatory variable adds one extra parameter to the model. In the case of the multiple
regression, this parameter is a slope. If we add any new explanatory variable to a model,
the chances to get a better predictive model increase, the unexplained variance is reduced
and the value of the R2 increases as well. So this “adjustment” penalizes the number of
explanatory variables in a model.

Interpretation of the coefficients and its significance

17

The interpretation of the intercept is straight forward: the expected intercept of the
predicted line with the OY axis. The interpretation of the slope is very easy. It tells us how
many “units” changes the dependent variable with respect to an increase in 1 unit of the
independent variable. In this case, the slope is 0.41. This means that with the increase in
one unit of petal length generates an increase of 0.41 units of petal width. If the
relationship was negative, instead of increase would be a decrease.
The significance of these coefficients is calculated with a Students's t statistic. The
significance of the slope is strongly related with the confidence interval defined as
[Estimate – standard error, Estimate + standard error]. If this interval contains the 0, or is
close to it, it is very likely that the slope is not significant. Because if the value 0 is included
in this confidence interval, it means that 0 is a highly probable value for the slope. And a
slope with 0 values means no effect of the independent variable on the dependent
variable. In our case, the slope is highly significant. In a similar way, the intercept is usually
significant the farther it is from 0 (obviously, if it was equal to 0, we do not need a model
with intercept).

Extracting more components from the model object

The object we called “model” has more components than those shown with the function
summary(). We can see which objects are those with the function objects():

> objects(model)
 [1] "assign" "call" "coefficients" "df.residual" "effects"
 [6] "fitted.values" "model" "qr" "rank" "residuals"
[11] "terms" "xlevels"

We can access each of these components individually. For instance, if we wanted to see
the fitted values:

> model$fitted.values
 1 2 3 4 5 6 7 8
0.21898206 0.21898206 0.17740652 0.26055760 0.21898206 0.34370869 0.21898206 0.26055760
 9 10 11 12 13 14 15 16
0.21898206 0.26055760 0.26055760 0.30213314 0.21898206 0.09425544 0.13583098 0.26055760
 17 18 19 20 21 22 23 24
0.17740652 0.21898206 0.34370869 0.26055760 0.34370869 0.26055760 0.05267990 0.34370869
 25 26 27 28 29 30 31 32
0.42685977 0.30213314 0.30213314 0.26055760 0.21898206 0.30213314 0.30213314 0.26055760
 33 34 35 36 37 38 39 40
0.26055760 0.21898206 0.26055760 0.13583098 0.17740652 0.21898206 0.17740652 0.26055760
 41 42 43 44 45 46 47 48
0.17740652 0.17740652 0.17740652 0.30213314 0.42685977 0.21898206 0.30213314 0.21898206
 49 50 51 52 53 54 55 56
0.26055760 0.21898206 1.59097494 1.50782385 1.67412602 1.29994614 1.54939939 1.50782385
 57 58 59 60 61 62 63 64
1.59097494 1.00891735 1.54939939 1.25837060 1.09206844 1.38309723 1.29994614 1.59097494
 65 66 67 68 69 70 71 72
1.13364398 1.46624831 1.50782385 1.34152169 1.50782385 1.25837060 1.63255048 1.29994614
 73 74 75 76 77 78 79 80
1.67412602 1.59097494 1.42467277 1.46624831 1.63255048 1.71570156 1.50782385 1.09206844
 81 82 83 84 85 86 87 88

18

1.21679506 1.17521952 1.25837060 1.75727710 1.50782385 1.50782385 1.59097494 1.46624831
 89 90 91 92 93 94 95 96
1.34152169 1.29994614 1.46624831 1.54939939 1.29994614 1.00891735 1.38309723 1.38309723
 97 98 99 100 101 102 103 104
1.38309723 1.42467277 0.88419073 1.34152169 2.13145698 1.75727710 2.08988144 1.96515481
 105 106 107 108 109 110 111 112
2.04830589 2.38091023 1.50782385 2.25618360 2.04830589 2.17303252 1.75727710 1.84042819
 113 114 115 116 117 118 119 120
1.92357927 1.71570156 1.75727710 1.84042819 1.92357927 2.42248577 2.50563685 1.71570156
 121 122 123 124 125 126 127 128
2.00673035 1.67412602 2.42248577 1.67412602 2.00673035 2.13145698 1.63255048 1.67412602
 129 130 131 132 133 134 135 136
1.96515481 2.04830589 2.17303252 2.29775914 1.96515481 1.75727710 1.96515481 2.17303252
 137 138 139 140 141 142 143 144
1.96515481 1.92357927 1.63255048 1.88200373 1.96515481 1.75727710 1.75727710 2.08988144
 145 146 147 148 149 150
2.00673035 1.79885264 1.71570156 1.79885264 1.88200373 1.75727710

Assumptions of linear regression, and how to test them

This part should be at the beginning, but we left it at the end for convenience. It is easier to
explain when we know well what the residuals are, and how to extract them. The point is
that a linear model as we presented it here can not be estimated for any kind of data. It is
only possible if our data meet certain assumptions. These assumptions are valid as well
for multiple linear regression, that we will talk about next in this section:

- Linearity: the dependent or response variable has to be a linear combination of the
parameters. In simple linear regression, we are testing this assumption directly with the
model itself. But in multiple regression, it is often good to perform a simple regression with
each independent or predictor variable. Those that do not show a significant coefficient of
determination should be excluded.

- Normality of residuals: residuals must follow a Normal distribution.

- Homoscedasticity: the variance of the model residuals, has to be homogenous across all
the range of the predicted values.

- Independence of residuals: Residuals should be uncorrelated with each other. Usually
these last two assumptions are not met by our data when there is some relevant predictor
variable that is missing in the model.

- Predictor variables should be linearly independent: obviously, this only applies to multiple
linear regression. This can be simply tested by performing simple linear regressions with
all possible pair – wise combinations of the predictor variables.

Statisticians usually combine two approaches to test the above assumptions. There are
specific tests for some of them, but they also may decide based in specific plots of model
components. The best way is probably combining both. Here, we are going to explain first
the tests, and then the plots.
First, the Normality of residuals could be tested with the Shapiro – Wilks test or the

19

Kolmogorov – Smirnov test. The last one is better for large amounts of data, so here, we
are going to see an example with the Shapiro – Wilks test. First, we have to create an
object containing the residuals. We can access the residuals, as we showed above like
this: model$residuals. But is perhaps more convenient to use a specific function, which is
residuals(). Then, we apply the test:

> res<-residuals(model)
> shapiro.test(res)

Shapiro-Wilk normality test

data: res
W = 0.9838, p-value = 0.07504

The null hypothesis is that there is no difference between a Normal distribution and the
distribution of the residuals. Because the p – value is greater than 0.05, there is no
evidence to reject the null hypothesis. So we are allowed to believe in the normality of
these residuals.
The homoscedasticity of residuals is tested with the non constant error variance test, from
the car package:

> require(car)
> ncvTest(model)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 37.74426 Df = 1 p = 8.065366e-10

The null hypothesis is that the errors are homogeneous, but the p – value is less than
0.05, so the null hypothesis should be rejected. Our errors are not homogeneous.

The independence of residuals could be tested with the Durbin – Watson test, also in car
package:

> durbinWatsonTest(model)
 lag Autocorrelation D-W Statistic p-value
 1 0.2723717 1.45491 0.002
 Alternative hypothesis: rho != 0

The null hypothesis is that the residuals are indeed uncorrelated, but the p – value is
significant, so the null hypothesis should be rejected, the residuals are autocorrelated.
Now, lest's see a few plots that can help us to interpret how our data meet or not these
previous assumptions. For the Normality, we have the QQ plot, which shows the
theoretical distribution of quantiles of the Normal distribution in a straight line. If the
residuals fit well this line, it means that they are probably Normal. The function qqPlot() is
also in the package car:

> qqPlot(model)

20

Our residuals are a bit sigmoidal but in general look very good. So the result of the test is
supported by this plot.
In order to check graphically the homoscedasticity of the residuals, we can plot the fitted
values of the dependent variable versus the residuals. If everything is right, the residuals
should be in average at the same distance from the fitted values across all the range of
fitted values. We can directly plot the residuals and fitted values extracting them from the
model, but the car package contains a function that performs this task directly:

> spreadLevelPlot(model)

Suggested power transformation: 0.4739141

As you can see, the residuals are clearly not homogenous, in agreement with the previous
test. Actually, the plot function additionally suggest a power transformation of our data in
order to get residual homogeneity. If we look at the red line showing a fitted regression, we
can see that there is a certain positive relationship. This is not what we should expect.

21

Because the residuals are normalized (with a Student method) their regression against the
fitted values should be a flat line.
The function plot() can also show similar plots to those obtained with those functions from
the package car showed above, as well as some additional ones, and it works with the
same argument (the name of the object that stores the model). It is a bit more convenient
because it does not need to install or load any package in order to be used.

What can we do when the assumptions are not met

So these data are not suitable for a linear regression. We can not trust our model, despite
the significance of the coefficients. The failure comes from the residual homoscedasticity
and the residual autocorrelation tests. It could be due to the fact that smaller petals are
more difficult to measure. But another explanation, as it was mentioned above, could be
that we are missing some relevant variable in the model.
We could solve the problem in two ways: 1) if the problem is the lack of an explanatory
variable, we would need to look for it, include it in the model, and perform all the tests
again. 2) If the problem comes from error associated with experimental techniques of
sampling, or to the own mathematical features of the variable, the best thing to do would
be transforming our variable. In the next session, mainly devoted to the General Linear
Model, we will go into details about efficient ways to transform our variables.

Multiple linear regression

We are not going to get into much details about multiple regression (step selection of
variables, etc.) since it is an issue that integrates well in the forthcoming section devoted to
the General Linear Model. Just remember that the assumptions needed to be met by our
data, and the ways to test them are the same as those detailed above except one
additional. This additional one is the lack of co – linearity between predictor variables. In
session 3 we will see how to deal with this.
In a multiple linear regression we simply have more than one predictor variable. The code
to do it consist in adding variables with a “+” sign to the formula. Here is an example with
the same data set:

> model2<-lm(Petal.Width~Petal.Length+Sepal.Length+Sepal.Width,data=iris)
> summary(model2)

Call:
lm(formula = Petal.Width ~ Petal.Length + Sepal.Length + Sepal.Width,
 data = iris)

Residuals:
 Min 1Q Median 3Q Max
-0.60959 -0.10134 -0.01089 0.09825 0.60685

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.24031 0.17837 -1.347 0.18
Petal.Length 0.52408 0.02449 21.399 < 2e-16 ***
Sepal.Length -0.20727 0.04751 -4.363 2.41e-05 ***
Sepal.Width 0.22283 0.04894 4.553 1.10e-05 ***

22

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.192 on 146 degrees of freedom
Multiple R-squared: 0.9379, Adjusted R-squared: 0.9366
F-statistic: 734.4 on 3 and 146 DF, p-value: < 2.2e-16

1.3 Non – linear regression (file R.S1.4)

The assumptions underlying non – linear regression are very similar to those for linear
regression, except that the function relating the predictors and the response variable is not
linear. The techniques for fitting non – linear regressions are potentially the same as for
linear regression. But, because we deal with more complicated functions and often with
scarce data, things can get more complicated.
Usually, we use non – linear regression when we have a priori knowledge about the
phenomenon that we are studying. We choose a non – linear function that we know that
represents well the dynamics of such phenomenon.
We are going to see an example of the fit of two different non – linear functions to the
same data set, so we will separately fit two models to the same data. This will give us the
opportunity to introduce a basic technique of model selection. We are going to decide
which of the two models fits the data better.

Fitting numerical responses of rotifers to Holling type II and type IV equations

Rotifers are planktonic invertebrates that feed on microorganisms, mainly, microalgae. In
population ecology, the function that describes the population growth of an organism with
respect to the amount of food ingested is termed “numerical response”. Holling developed
a general mathematical model describing an archetypical numerical response, which is
nowadays named “Holling equation” or “type II numerical response”. This model is defined
by a monotonically increasing function that decreases its slope till reaching a saturating,
stable point, when the organisms can not grow faster even if there was more food
available. An hyperbola, in sum. This is how it looks:

In contrast, the type IV numerical response does not show saturation of the response to

23

the increase in food. Instead, the population growth decreases. This could be due to
different reasons, namely, a group defense strategy of the prey, or the presence of toxins
in the prey. So this is how a type IV numerical response function looks like:

The function for the Holling type II equation has several possible versions, this form is
what we are going to use, to determine the population growth rate:

Where the parameters are: λmax , the maximum growth rate, defining the upper asymptote.
Kf , a half saturation constant. f0 is the minimum amount of food necessary for positive
growth, and f is the food, our independent variable.
And, for the type IV numerical response, we have the following equation defining the
population growth rate:

Where there is only one new parameter: i, which is defines the negative slope after the
maximum of the function.
Our data consist in population growth rates of rotifers that were fed with constant amounts
of food. So we are going to have a look at our data, fit these two non – linear functions,
and choose the best one. First we load and plot the data. Food abundance are biovolume
units.

> dat<-read.csv2("RotiferNR.csv",sep=";")
> head(dat)
 X FoodN rN
1 24 0 0.106938130
2 25 0 0.145855274
3 26 0 0.005994843

24

4 27 0 0.009106229
5 28 0 0.131900895
6 29 21500 1.823847637
plot(dat$FoodN,dat$rN,xlab="Food abundance",ylab="Daily growth rate",pch=19)

The data look like they would better fit a type IV equation, but we better demonstrate it with
statistic techniques.
First, we fit the two models. We are going to use the most basic fitting technique, which is
the minimization of the squares sum, same as for the linear regression. But this is the
version called non – linear minimum squared sum, or non – linear least squares. The
function in R that does this task is nls(). The most important arguments of this function are
the mathematical expression of the function, and an initial tentative value for all the
parameters, provided in a list. We can guess the majority of these initial values by looking
at our data. Otherwise, we could simulate our function varying certain parameters and see
more or less which values give us a reasonable fit to our data. It is not a big problem if we
are wrong with the initial value of one or two parameters. These is the code to fit the type
II model:

> typ2<-nls(rN~(rmaxN*(FoodN-FoodminN))/
(KfN+FoodN),start=list(rmaxN=0.9,FoodminN=10000,KfN=20000),data=dat)
> summary(typ2)

Formula: rN ~ (rmaxN * (FoodN - FoodminN))/(KfN + FoodN)

Parameters:
 Estimate Std. Error t value Pr(>|t|)
rmaxN 1.9684 0.1375 14.314 5.69e-12 ***
FoodminN -39.4740 173.9305 -0.227 0.823
KfN 973.7863 3579.3209 0.272 0.788

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4273 on 20 degrees of freedom

25

Number of iterations to convergence: 15
Achieved convergence tolerance: 8.619e-06

As we can see, among the three parameters, only the maximum growth rate is significant.
When many parameters are not significant, this probably means that we chose the wrong
mathematical function. Let's see the fit to the type IV model:

> typ4<-nls(rN~(rmaxIVN*(FoodN-FoodminIVN))/((FoodN+KfIVN)*(1+
(iN*FoodN))),start=list(rmaxIVN=1.5,iN=0.000003769,FoodminIVN=10000,KfIVN=5806),data=dat)
> summary(typ4)

Formula: rN ~ (rmaxIVN * (FoodN - FoodminIVN))/((FoodN + KfIVN) * (1 +
 (iN * FoodN)))

Parameters:
 Estimate Std. Error t value Pr(>|t|)
rmaxIVN 4.104e+00 4.563e-01 8.994 2.82e-08 ***
iN 2.546e-06 5.267e-07 4.835 0.000115 ***
FoodminIVN -6.636e+02 5.302e+02 -1.252 0.225888
KfIVN 3.195e+04 7.319e+03 4.366 0.000333 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1426 on 19 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 2.191e-06

Here, most of the parameters are significant, except the minimum food. When a parameter
is not significant, while many others are, this usually means that we do not need the non –
significant parameter in our model. So we should simplify the model formula removing the
useless parameter. Because this is just an example, we are not going to do it here.
The number of iterations to convergence is lower in the type IV model. This could mean
that the technique was able to find better parameter estimates with less effort, but this also
depends on the initial values provided for the parameters.
The residual standard error is lower in the type IV model. This might lead us to think that
this model is better because there is less unexplained variance from the data. But, this, by
itself is not what the statisticians consider that demonstrates that a model is better.
Because the model of the type IV equation has one more parameter, this would by chance
itself increase the amount of variance explained. So we need a method of model selection
that considers the two aspects: first, it is better to explain more variance, but, second, it is
not good to have many parameters, so increasing total number of parameters should be
penalized. Parameters whose inclusion adds little contribution to the explained variance
are not recommended. For this purpose was developed the Akaike Information Criterion
(AIC), which takes into account the likelihood of the model, and the total number of
parameters. This way of selecting models is based in the principle of maximum parsimony,
that states that we do not need more complicated models (more parameters) to explain
our data, if they do not add enough relevant information.
So, we need to know the AIC of each model, the lowest the AIC, the better the model. In
this case, we will use a version of AIC named “corrected AIC”, which was developed for

26

small sample sizes (n = 15 – 60) like ours. The R function is the AICc(), from the qpcR
package:

> require(qpcR)
> AICc(typ2)
[1] 32.21128
> AICc(typ4)
[1] -16.48615

The type IV model seems clearly better. But, we are not going to stop here. From a
statistical point of view, it is better if, besides showing a clear different between the AIC
values, we could show, somehow, whether if this difference is significant or not. For this
purpose, we can apply a likelihood – ratio test to compare both AICc values (the AIC
values are basically corrected likelihood units).
But there is one important point here. We can only use this test to compare “nested”
models. What are nested models? We may say that they are “models of the same family”.
More correctly, models are nested when among them, one can be expressed as a
particular case of the other. If you look at our formulas, it is clear that our models are
nested, because the type II model could be considered as a particular case of the type IV
model when the parameter i is equal to 0.
So here is the likelihood – ratio test, with function anova() (don't be confused here, this
function is not performing analysis of variance, it has this name because it generates its
output with a table of the same format as the anova tables):

> anova(typ2,typ4)
Analysis of Variance Table

Model 1: rN ~ (rmaxN * (FoodN - FoodminN))/(KfN + FoodN)
Model 2: rN ~ (rmaxIVN * (FoodN - FoodminIVN))/((FoodN + KfIVN) * (1 + (iN * FoodN)))
 Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 20 3.6523
2 19 0.3865 1 3.2658 160.54 1.029e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As we can see, the difference in AIC is significant, so we definitely choose the type IV
model.
In the following plot, we represent graphically the fitted curves and the data, so we can
clearly see how the type IV model fits better the data:

> typeII<-curve((1.97*(x-(-39)))/(974+x),from=0,to=800000)
> typeIV<-curve((4.1*(x-(-664)))/((31950+x)*(1+(0.00000254*x))),from=0,to=800000)
> plot(dat$FoodN,dat$rN,xlab="Food abundance",ylab="Daily growth rate",pch=19)
> points(typeII,type="l",lty=2)
> points(typeIV,type="l")
> legend("bottomright",c("type II","type IV"),lty=c(2,1))

27

The type II model is not suitable for these data because it does not capture the decrease
in growth rate after reaching the maximum, instead, it shows a saturating point. A few
comments about the fitted parameters: it is clear that a negative value for the minimum
food does not make biological sense. Additionally, t is not significant even in the type IV
model. So we can eliminate this parameter for the model. The estimated values for the
maximum growth rate are probably a bit overestimated in the type IV model, because this
function projects the growth rate to higher values than the actual values that it shows in the
data, as if there was a maximum value that the data can not reach because of the negative
effect of food. However, In reality, we know that the maximum values shown in these data
are close to the real maximum possible values.

How to select between models if they are not nested?

In this case we would keep with the model of lower AIC. But we can not estimate if the
difference between AIC is significant. Also, having a look at a plot of fitted values versus
residuals could help. Remember that residuals should follow a normal distribution, and in
this kind of plot, they should to be distributed homogeneously at different distances around
a hypothetical flat line. Here is how it looks like for our two models above:

> res2<-residuals(typ2)
> fit2<-predict(typ2)
> res4<-residuals(typ4)
> fit4<-predict(typ4)
> STres2<-res2/fit2
> STres4<-res4/fit4
> plot(fit2,STres2,pch=19,main="Type II model",xlab="Fitted values",ylab="Standardised
Residuals")
> plot(fit4,STres4,pch=19,main="Type IV model",xlab="Fitted values",ylab="Standardised
Residuals")

28

Both plots show a “flat” relationship. But residuals from type IV model are clearly more
homogeneous. However, there is a problem common to both models, which is that there
are larger residuals for the lower values of growth rate. This makes sense because lower
growth rates show more variation. But this problem can not be solved for the residuals.
This feature of the residuals suggests weighting the data, as we will explain below. This
may improve the fitting of the models, but not solve the problem of the residuals.

What to do when fitting goes wrong with nls()

Here we are going to comment, without going into too much depth, a few features that can
improve our fitting with this function. And if the fitting goes definitely wrong, what optional
methods we have.
One feature of nls() that we did not use, but is suggested looking at the distribution of
variance in the data and the plot of residuals, is adding weights to the data. What weights
do is balancing the importance of each data during the fitting process. We did not mention
it, but it is also possible to use them with the linear regression functions. The argument is
very simple: weights, and its value is a vector with the weights. A very common way of
weighting is by the inverse of the variance, or the standard deviation. Then, the weights
will be lower in those data with higher variance. This gives less importance in the process
to those data whee there is more uncertainty about their actual value. This is what we
could have done in our examples.
One thing that can fail in nls() is about the minimum step size of the iterations. If this step
is too large, the iterations might not find the best value for the estimation, because they are
not precise enough. We can decrease the value of the step size with the argument
minFactor, which is inside the function nls.control(), that can be used inside the function
nls().
There is also the possibility that the maximum number of iterations is too low. Then, we
can increase it as well, with the argument maxiter, located as well inside the nls.control()
function. Here is an example of code showing how these two arguments are used
(although in out type II model would not produce any change):

> typ2<-nls(rN~(rmaxN*(FoodN-FoodminN))/
(KfN+FoodN),start=list(rmaxN=0.9,FoodminN=10000,KfN=20000),data=dat,nls.control(maxiter=1
00,minFactor=1/5000))

29

If still, the nls() does not work, the reasons are that our data are good enough (few data or
not matching the functions we are trying to fit) or because the model is too complex, it has
too many parameters.
Before going to an alternative, stronger, fitting technique, we may try to fit each parameter
alone with nls(), giving some tentative values to the other parameters. Then, we certain
estimate for that parameter, add it to the model expression and go the next parameter. And
so on until, after several rounds, the estimates of the parameters do not get better. This
solves the problem of having too many parameters in the model.
If none of the things above work, then we have to go to more powerful methods of
parameter estimation than the non – linear least squares from nls() function. One of them
is the Nelder – Mead algorithm applied to maximum likelihood estimates. This can be done
with the function mle(), from package stats4. The maximum likelihood gives us the quality
of fitting of the model, in a similar way as the sum of squares. But the Nelder – Mead
algorithm is a more powerful optimization method at searching the parameter values than
the iterations performed by the least squares algorithm from nls().
Another methods, even less likely to fail than the Nelder – Mead algorithm are the
“simulated annealing” algorithms. It is less accurate in the estimates, but their estimates
could be further refined (if needed) by applying the mle() function. There are many
functions that implement these algorithms in R, one of the most basic ones is the function
anneal() from the package likelihood. However, the code is a bit more complicated for a
beginner because we need to create a function or the model formula. Here is an example
with the Gompertz growth model (Script Example anneal). First, we load the data, which
are mollusk sizes with the corresponding time.

> ##load data
> dat<-read.csv2("postlarva tmn.csv",sep=",")
>
> ##Packages
> require(likelihood)
>
> ##Remove outliers: 154, 188, 246, 259, 341
> dat2<-dat[-(c(154,188,246,259,341)),]

Now, we create a user – defined function for the Gompertz model:

> #Function for Gompertz model
> modGom<-function(sizeInf,k,t0,tme1){
+ postlvsize<-sizeInf*exp(-exp(-k*(tme1-t0)))
+ return(postlvsize)
+ }

Now, the initial parameter estimates (the time they do not need to be accurate). The lower
and upper bounds for parameter search, and the value for the argument “var”, that will be
further used in the anneal() function.

> #Initial parameter estimates
> parIN<-list(sizeInf=30,k=0.02,t0=40)
>
> #Lower and upper bounds for parameater search
> parlow<-list(sizeInf=15,k=0.01,t0=20)

30

> parhigh<-list(sizeInf=50,k=0.5,t0=60)
>
> #Object for the further "var" argument
> var<-list(tme1=dat2$tme1,x=dat2$postlvsize,mean="predicted",sd=8.41,log=T)

Now, the simulated annealing itself, with function anneal(), and showing the optimized
parameters and AIC value for the model at the end. You will get a plot with the increase in
likelihood at each step of parameter iteration. Notice that the likelihood is to be maximized
during this optimization process (not minimized, as it is the case for the minimun sum of
squares optimization).

> #SIMULATED ANNEALING
> resultann<-
anneal(modGom,parIN,var,dat2,par_lo=parlow,par_hi=parhigh,dnorm,dep_var="postlvsize",max_
iter=20000)
>
> #Optimized parameters
> resultann$best_pars
$sizeInf
[1] 34.41218

$k
[1] 0.03516416

$t0
[1] 44.11132

>
> #AIC for the model with these parameters
> resultann$aic
[1] 2088.382

31

1.4 Non – parametric regression (file R.S1.5)

The methods for non – parametric regression have shown recent spread among several
scientific disciplines. The major reason for this was the advance in computer power. These
methods use very complex calculations that are performed very fast with our actual
computers. They are very good tools for data exploration, and they are the basis of the
fitting process of the generalized additive models, that we will further introduce in this
course.
These methods, despite its name, do not consist in fitting functions “without parameters” to
our data. The kind of functions that they fit are very flexible and complex functions, often
with many parameters, that can adapt very well to the variations shown in our data. What
“non – parametric” means here, could be more properly said “free of rigid parameter
structure”. As we have seen in our previous examples, the linear functions or the type II
and type IV models of numerical responses have a rigid “skeleton” that is determined by its
simple formulation and the parameters.
This is an example with fake data comparing the results of fitting a parametric linear
function (on the left) and non – parametric function (on the right, a polynomial function of
degree 2) to the same data.

The non – parametric functions are, hence, more flexible, and can better adapt to the
actual variations shown by the real data, because they are smoothed curves of the data.
The main point is to keep the adaptation to this variation in a compromise between over
smoothing and under smoothing. Under smoothing (the same as overfitting) means that
the function would adapt to features that are specific of our sample data, and not a general
feature of the phenomenon under study. Over smoothing means that the fitted function
represents only very general features of the data. This compromise between under
smoothing and over smoothing is also called the trade off between bias and variance,
respectively.
Before getting into an example of non – parametric regression, there are a few
assumptions and concepts that we should learn:

- Non – parametric regression follows the same assumptions than the linear and non –
linear regression, except that the unknown function to fit has one only assumption to meet:
being a smooth function.
- A key parameter to find is the bandwidth, usually represented as h. This parameter
defines the width of an interval around each point of the data. Within this interval, the data

32

values will be smoothed and fitted to a curve. The non parametric curve will be constituted
by all these curves fitted to the smoothed intervals.
You can clearly understand that, if h is high, the overall curve will be strongly smoothed,
and the curve will represent only general features of the data. If h is small, the curvewill
follow very close the small variations in the data points.
- There are several methods to perform the regressions inside the intervals defined by h:
moving average (the simplest, not very common to be used), weighted moving average or
Kernel, local polynomial regression, splines (weighted least squares) and others.
- Several of the methods above are weighted. This means that not every point inside the
interval defined by h has the same importance. There are specific functions to weigh the
values. Among the most used are the Gaussian, Epanechnikov, Triangular... They usually
give more importance to the central point in the interval, and this importance decreases
towards the extreme of the intervals.

The value of h could be assigned arbitrarily, but it is better to use an objective method,
because the parameter h is the key parameter of the model to determine the compromise
between bias and variance. There were developed many methods for the objective
estimation of h (they are called as well methods for estimating the complexity of the
model):

- Based in the trade – off between MSE (measure of the local error in the interval) and
MISE (measure of the global error of the data). These are called Plug – in methods, and
exists a variety of them.
- Based in cross validation: the least squares cross validation and the generalized cross
validation.
- AIC.
- Bootstrap methods
...

We are going to work now with a simple example of non – parametric fitting. For this
purpose, we will use the data set available in R called geyser, from the package MASS
(installed, but not loaded by default). This data set contains data on the duration of the
eruptions of the geyser called “Old faithful”, from Yellowstone Park (USA) during 15 days.
First, we load the packages with the necessary functions, the data, and we plot the data to
have a look at them:

> require(MASS)
> require(KernSmooth)
> require(pspline)
> require(locpol)
> data(geyser)
> x<-geyser$duration
> y<-geyser$waiting

> plot(x,y,pch=19)

33

Now, we are going to fit a non – parametric curve with a spline method. The spline method
uses polynomial functions of cubic degree, minimum.

> spline<-sm.spline(x,y)
> plot(x,y)
> lines(spline,lty=1,lwd=2,col="green")

From my point of view, the cubic degree is already too much degree, the spline seems to
be a bit under smoothing, or overfitting.
We are going to try now with a local polynomial method, with polynomia always of degree
2, and compare different methods of selection of h. Then, we will conclude which one is
better for these data.

> #Plug - in method 1
> h1<-dpill(x,y)
> h1
[1] 0.2383502
> fit1<-locpoly(x,y,bandwidth=h1,degree=1)
> #Plug - in method 2
> h2<-pluginBw(x,y,deg=1,kernel=gaussK)
> h2
[1] 0.08805326
> fit2<-locpoly(x,y,bandwidth=h2,degree=1)
> #Ordinary cross validation method
> h3<-regCVBwSelC(x,y,deg=1,kernel=gaussK)
> h3
[1] 0.739138
> fit3<-locpoly(x,y,bandwidth=h3,degree=1)

34

The Plug – in method 2 is, in principle, the closest to under smoothing or overfitting, and
the cross validation method, the one that most “oversmooths”. Let's see how they compare
in a plot:

Our guesses were true regarding the values of h: the plug – in of the second type is clearly
overfitting, and doing strange things in areas where there are no data. So, for these data, it
seems that a local polynomia of degree 2 is the best choice. And, from my point of view, a
bandwidth selector based in cross – validation is the best. Because it does not overfit and
it does not depend so much on a single point in areas where there are few data (as the
other two methods do with the first point, for instance).

35

Summary of regression

36

Section 2: Contrast of hypothesis

Contents

2.1 Main frameworks for hypothesis testing

2.2 Parametric and non parametric tests for hypothesis testing

37

2.1 Main frameworks for hypothesis testing

We will talk briefly about four common frameworks for making inference from data, in order
to learn the main differences between them. During this course, we will be using almost
always parametric or frequentist statistics, but it is good to know the foundations of the
other frameworks:

1) Parametric or frequentist statistics: they are the most commonly employed by
researchers and taught in general statistics courses. They make the main assumption that
the data to be analyzed follow certain distribution, most often the Normal distribution.
Then, they calculate the parameters for that distribution. Based in the fact that those
parameters belong to, often, a Normal distribution, a contrast statistic is calculated
(Fischer's F, Student's t,...) which is a random variable whose distribution is known for the
null hypothesis (H0). The formula of the contrast statistic defines the hypotheses that is
being tested (F is used for comparing variances, t for means, etc.)
Inference is made after assigning to the calculated value of that contrast statistic the
probability of belonging to the known distribution of that contrast statistic under the null
hypothesis (H0). The limit value of this probability is, usually, by consensus α = 0.95.
It is supposed that the null hypothesis reflects the “most objective” point of view. Then, the
null hypothesis states that “everything you are comparing is the same” and the differences
found between the observed and expected are due to chance. So, the variation is random.
Parametric statistics test the probability of data given the null hypothesis is true.
The methods for inference were constructed in a conservative way, so that rejecting the
null hypothesis is difficult.
One of the limitations of the scientific method applied with frequentist or parametric
statistics is that the null hypothesis could be rejected, but it is never accepted. So, if the
test yields a significant p – value, we learn that there is evidence to say that H0 is false. But
if the test yields a non – significant p – value, we are not allowed to say that H0 is true. We
simply say “There is no evidence to say that H0 is false”. This comes from the hypothetic –
deductive scientific method.
Here is a schematic representation of parametric or frequentist methods:

38

2) Bayesian statistics: within this framework it is also assumed that data follow a
distribution, but not any general distribution. The distribution of the data is constructed
during the analysis departing from prior knowledge about the distribution of our data.
The general procedure of bayesian statistics can be summarized in the following steps:

- Setting a probability model with distributions for all the quantities of interest in our case:
the dependent variable, but also the parameters (mean, variances,…) of the distributions
are random variables with their probability distribution. This is known as the prior
distribution. And it is constructed based in prior knowledge about the phenomenon under
study. The differences with parametric statistics here are that the distribution assumed in
that other framework is a general one, usually the normal, and the parameters have fixed
values.
- Conditioned by our present observed data, reinterpreting and recalculating the prior to
construct a posterior model of distributions that can better fit our data.
- Evaluate the posterior model: how it fits our data, if the conclusions are reasonable, and
how sensitive are our observed data to the assumptions that our model needs. During this
process, the model could be used to predict further observations. It could be used some
sort of contrast statistic, defining the hypothesis to test, based in the predictions from our
model, so that we can calculate the probabilities of the values of that contrast statistic. But
unlike in the parametric framework, the distribution of the contrast statistic comes from the
posterior model (so it is conditioned by our actual data) it is not a variable with a fixed
distribution.

The inference is made from an opposite point of view than parametric statistics: it is tested
the probability of certain hypothesis about the value of a parameter (not necessarily the
null hypothesis) given the data, or conditioned by the data. This comes from the formula of
probabilities of the Bayes theorem:

Where P(A|B) is the posterior probability, or probability of the prior P(A) given the observed
data (B).
The conclusion is made after calculating this probability value of P(A|B) and there is no
consensus value for anything. Obviously, probabilities greater than 0.5 give more chances
for your hypothesis being true than false.
Bayesian statisticians believe that the null hypothesis of “no differences” is not necessarily
the most objective. Rather, prior information should be used to specify a hypothesis.
They also criticize that parametric methods work with distributions that are not seen in the
data (like the distribution of a contrast statistic, for instance).

3) Monte Carlo statistics: in this case, there are no assumptions about an underlying
distribution of the data. The distributions of the data are calculated by randomizing the
data with techniques like the bootstrapping. More or less like “shuffling” your data.
So, in summary, distributions are generated from the observed data. There might also be

39

no data, but we know the functional form and parameters (for instance, we know that our
process follows certain distribution, and we know the parameters).
Probabilities are calculated from these simulated distributions. Then, the inference is made
in a similar way than for the parametric statistics.
These methods are conceptually very easy to understand, but they could become complex
at the operational level when complex models are involved. Mainly, at the step of
generation of random data.
We use these methods when we can not make any assumptions about the underlying
distribution of the data, either because we have limited amounts of data, or we do not
know anything about the phenomenon under study. These two reasons would prevent us
of applying parametric or Bayesian approaches to our analysis.
* the statistic frameworks are not that rigid. Monte – Carlo methods, for instance, are often
involved in Bayesian methods and sometimes also with parametric and non – parametric
methods.

Here is a very simple example of a Monte – Carlo method:

Imagine we have two samples that we want to know if they were drawn from different
populations. So, if they come from the same underlying distribution but with different
parameters (mean in this case) for each population. In this case our dependent variable is
one morphological index (skull cephalic index = (skull length/skull width)*100) of fossil
skulls from cavern bears found in two different caves. We want to know how likely it is that
they belong to different populations. But we have very limited data (n = 8 per sample). So
we better make no assumptions about normality. We do not have either any prior
information about the distribution of this measure in cavern bears (they are extinct, and
there are no data available). So we can not apply directly a Bayesian approach either.
These are our data:

> cave1<-c(54.8,53.5,56.2,52.1,59.2,59.6,55.1,54.7)
> cave2<-c(55.4,56.7,54.5,57.3,55.7,55.7,57.8,59.1)

What we wanted to test is if the mean index values are different between our 2 caves. So
we have to construct a contrast statistic about the difference. The Student's t statistic is
such one, but we can not use it here because it needs the assumption of normality for the
data from both populations, and we can not assume it here. So we are simply going to use
as contrast statistic the absolute value of the difference between the means, and we will
call it “MD”:

> MD<-abs(mean(cave1)-mean(cave2))
> MD
[1] 0.875

So this is our observed value of the contrast statistic. Now, we are going to simulate what
would be its “null” distribution by “shuffling” our real values of skull index from both caves
in order to create combinations of skull indexes with sample size = 8. Then, we will
calculate their MD values from those combinations. Then, that distribution of MD values is
going to be our “null” distribution, because samples from both caves are mixed in the same
sample, so in principle, there should not be real differences between samples.
Then, we would calculate the probability of observing, within that null distribution, a value

40

greater than MD = 0.875, which is our observed value. So, we take the following steps:
First, we use a loop to generate, for instance, 1000 simulations of MD values from
“shuffled” combinations of our data:

> caves_1.2<-c(cave1,cave2)
> MD.sim<- c()
> for (i in 1:1000) {
+ cave1.s<-sample(caves_1.2,8,replace=TRUE)
+ cave2.s<-sample(caves_1.2,8,replace=TRUE)
+ MD.sim[i]<-abs(mean(cave1.s)-mean(cave2.s))
+ }

And this is how the simulations look like in a histogram:

> hist(MD.sim)

As we can see in this plot, the value of 0.875 seems highly probable. Let's calculate its
probability:

> length(which(MD.sim>=MD))
[1] 391

There are 391 values out of 1000 simulations that are larger than 0.875. So the probability
is 391/1000 = 0.391. So it is too high to reject the null hypothesis. We have to conclude
then than skulls from both caves belong to the same population.

41

4) Non parametric tests: There are no assumptions about the distribution of your data
and there is no construction of distribution for your data either. These methods do not use
distributions, and so, no parameters (no mean, no assumptions about variances, etc.).
Again remember not to mistake these techniques with the non parametric regression and
related techniques: generalized additive models. In that context, “non parametric” means
something like “free of rigid parametric functions” but parameters are still employed in
those methods.
These methods use a contrast statistic with known distribution, like the parametric
techniques.
But the contrast statistics do not need the assumption of normality, because in its
calculation are not involved parameters from any distribution (means, variances, etc.).
Instead, these are methods based, mainly, in ranking your data and comparing the ranks
of the groups that you want to compare. For instance, the Mann – Whitney's U test has the
following formula:

Where n1 and n2 are the sample sizes of groups 1 and 2, and R1 is the sum of al the ranks
of the data from group 1. A value U2 is also calculated equivalently with sample from group
2. The smallest value between U1 and U2 is chosen. Now, from this value, its p – value is
calculated from a distribution of the U statistic. When sample size is large enough, the
distribution of U can be approximated with a Normal distribution (then, the U value is
normalized).
*Remember again that statistic frameworks are not that rigid. A mixture of them can be
used when analyzing data. For instance, the Mann Whitney test can be applied as well to
Normal data, in a similar way as t – test, but it is not as efficient.

Here is a brief example of calculation:

> #Data from group 1:
> y1<-c(6,7.5,4.25,5,3.2,7,5.3,6.1,3.6,4)
> #Data from group 2:
> y2<-c(8,7.1,6.7,4.5,5,3.8,7.7,6.9,8.1,5.2)
>
> #Join the data
> y12<-c(y1,y2)
>
> #Rank the data (just to see how they rank)
> rank(y12)
 [1] 11.0 17.0 5.0 7.5 1.0 15.0 10.0 12.0 2.0 4.0 19.0 16.0 13.0 6.0 7.5 3.0
[17] 18.0 14.0 20.0 9.0

Note that the value 5 is present in both groups, so there is a tie. This is solved by
assigning the rank 7.5 to both cases (the average between rank 7 and 8).

> #Ranks for y1 and y2
> r1<-c(11,17,5,7.5,1,15,10,12,2,4)
> r2<-c(19,16,13,6,7.5,3,18,14,20,9)

42

We can see that values from group 2 seem to have greater ranks. Now, if we apply the
formula for both groups:

> #Apply Mann - Whitney's U formula
> U1<-10*10+(10*(10+1)/2)-sum(r1)
> U1
[1] 70.5
> U2<-10*10+(10*(10+1)/2)-sum(r2)
> U2
[1] 29.5

The smallest U value is for group 2, so we use U2 for calculating the p – value. Checking a
table of limit values of U for α = 0.95 with samples sizes n1 = 10 and n2 = 10 is 23. Our
values is greater than 23, so the groups have significantly different values.

Another very common non – parametric test consists in using, to calculate the contrast
statistic, a ratio of observed and expected frequencies of a categorical variable. The
distribution of this contrast statistic is often approximated with a Chi – squared distribution.

Where Oi are the observed values of certain categories and Ei are the expect values
(based in the calculated probabilities). These expected probabilities could be calculated
assuming certain probability distribution (like in a typical goodness of fit test) or directly
from our observed data, assuming a discrete uniform distribution. This is the typical case
of “contingency tables” (in the non – parametric case).

Male Female Total

Smoker 23 31 54

Non Smoker 39 34 73

Total 62 65 127

The row and column totals are called “marginal totals” and the total number of individuals
is called “grand total”. Here, the expected probabilities of a uniform distribution would be
calculated simply dividing the grand total by the number of cells. In this case, p = 0.25 for
each cell.

The non – parametric framework is usually the less preferred. It is used when we have
strong limitations in our data, usually due to small sample sizes.

43

2.2 Parametric and non parametric tests for hypothesis testing
(file R.S2.1)

The tests for hypothesis testing, under the frameworks of parametric and non parametric
statistic, have three main steps, as we know from our previous section:

1) Assume (parametric) or not (non parametric) certain distribution for our data.

2) Based in the values of certain parameters of the distribution (parametric) or based in
other quantities (ranks, observed-expected) calculate the value of a contrast statistic. The
contrast statistic must be suitable for the hypothesis that we are testing. The hypotheses is
implicit in the calculation of its value (formula).

3) Assign a probability to the contrast statistic based in its known distribution.

So, the only point that differs between the tests is the hypothesis being tested (i.e. the
contrast statistic). In order to select a suitable contrast statistic, it is very important the
difference between categorical or qualitative dependent variables and numerical
dependent variables.
Now we are going to see a brief summary of common statistical test classified according to
the criteria of a) the hypothesis to contrast, b) parametric – non parametric and c)
quantitative – qualitative dependent variables. There are more tests than what is shown in
this summary, but the essential contrasts are shown here. Most of other tests are
alternatives or special cases of those shown in this summary.

A. Goodness of fit tests
A.1 Quantitative variables
A.1.1 Parametric

- Shapiro – Wilks: assumes the normality of the data and test the null hypothesis that data
come from a Normal distribution. We have already used it and we will keep using it for a
while.

A.1.2 Non parametric

- Kolmogorov – Smirnov: The one – sample version of his test compares one sample with
a reference (continuous) distribution. We have seen an example with the fit to a gamma
distribution in session 2.
- Pearson's chi – squared test for the goodness of fit: it uses a contrast statistic that
compares the observed frequencies of a variable and its expected frequencies under the
assumption of certain theoretical distribution. It can be used with contingency tables
(frequency data distributed in categories). Example:

> dat<-seq(0,1,by=0.05)
> Obsv.p<-
c(0.38,0.4,0.43,0.45,0.45,0.48,0.5,0.53,0.52,0.51,0.54,0.59,0.65,0.7,0.8,0.76,0.81,0.84,0
.9,0.95,0.94)
> Theor.p.Norm<-sapply(dat,pnorm)
> chisq.test(Obsv.p,p=Theor.p.Norm,rescale.p=T)

44

Chi-squared test for given probabilities

data: Obsv.p
X-squared = 0.2866, df = 20, p-value = 1

B. Homogeneity
B.1 Quantitative variables
B.1.1 Parametric

- Stundent's t test: this contrast statistic is often used when comparing the homogeneity of
means of two populations. The null assumption is that both means are equal. It can be
used with related (dependent) samples or independent samples. It is used as well when
we want to compare the mean of our data against a fixed value. On each case, the formula
for the contrast statistic is slightly different. In this later case is often applied to test the
significance of the slope of a linear regression, being the null hypothesis that the slope is
equal to 0 (that would be, obviously, a non significant effect of our predictor on our
response variable).
These are some examples of use of the t – test:

In independent samples:

> data(iris)
> pop1<-iris[iris$Species=="setosa","Sepal.Length"]
> pop2<-iris[iris$Species=="virginica","Sepal.Length"]
>
> t.test(pop1,pop2)

Welch Two Sample t-test

data: pop1 and pop2
t = -15.3862, df = 76.516, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.78676 -1.37724
sample estimates:
mean of x mean of y
 5.006 6.588

The difference between means is highly significant than 0 (the null hypothesis is rejected).
In this case of independent samples we have to keep the default value of the “paired”
argument (FALSE) which value would be TRUE only in the case of a test for related
(dependent) samples. For instance, imagine that we have a measurement of % hematocrit
of 15 athletes before and after a specific training. We want to know if the training has
increased the level of hematocrit, but our samples are not independent (they belong to the
same athletes):

> s1<-c(48.8,37.3,46.4,43.4,37.6,40.4,40.7,42.5,47.5,36.6,40.9,35.5,51.7,57.5,43.9)
> s2<-c(56.5,46.6,53.4,47.5,51.5,51.2,61.7,53.8,52.1,46.7,50.6,54.4,50.4,50.7,52.5)
>
> t.test(s1,s2,paired=TRUE)

45

Paired t-test

data: s1 and s2
t = -4.7797, df = 14, p-value = 0.0002936
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -12.449434 -4.737233
sample estimates:
mean of the differences
 -8.593333

Here, the null hypothesis is rejected as well, since the p – value is smaller than 0.05.
If we want to perform a t-test for the hypothesis of the mean being different than a fixed
value, we have to specify this value in the argument ”mu”:

> mean(s1)
[1] 43.38
> t.test(s1,mu=50)

One Sample t-test

data: s1
t = -4.1838, df = 14, p-value = 0.000919
alternative hypothesis: true mean is not equal to 50
95 percent confidence interval:
 39.98633 46.77367
sample estimates:
mean of x
 43.38

> t.test(s1,mu=43)

One Sample t-test

data: s1
t = 0.2402, df = 14, p-value = 0.8137
alternative hypothesis: true mean is not equal to 43
95 percent confidence interval:
 39.98633 46.77367
sample estimates:
mean of x
43.38

So, for a real value of 43.38 for the mean, comparing it against a value of 50, the
difference is found to be significant, and for a value of 43 is found to be non significant, as
it could be expected.

- Fischer – Snedecor F: This test can be used for different purposes: homogeneity of
means, homogeneity of variances, fit of a regression model. On each case, the F contrast
statistic is calculated in a different way (ratio of variances, ratio of RSS, ...) but always
follows the F distribution. There is a specific function in R for the homogeneity of
variances, var.test(). The F test for the fit of a regression or linear model is performed by
default in R when fitting a linear model.

46

- Levene's test: an alternative to F test for the variance homogeneity. In R, there is the
function leveneTest() in the package car.
- Bartlett's test: another test for the homogenity of variances. In R, we have the function
bartlett.test().

B. Homogeneity
B.1 Quantitative variables
B.1.2 Non parametric

- Kolmogorov – Smirnov: test for the homogeneity of 2 independent samples. Example:

> a<-c(10.01,11.18,8.09,11.45,12.69,14.64,6.28)
> b<-c(6.43,16.75,18.41,9.84,7.36,18.98,13.89)
> ks.test(a,b)

Two-sample Kolmogorov-Smirnov test

data: a and b
D = 0.4286, p-value = 0.5752
alternative hypothesis: two-sided

- Mann – Whitney: test for the homogeneity of 2 independent samples. In R there is a
single function for performing this test and the Wilcoxon test (see below) for 2 dependent
samples. They are not the same but they are equivalent. Example:

> wilcox.test(a,b)

Wilcoxon rank sum test

data: a and b
W = 18, p-value = 0.4557
alternative hypothesis: true location shift is not equal to 0

- Wilcoxon: test for 2 dependent samples.

> wilcox.test(a,b,paired=T)

Wilcoxon signed rank test

data: a and b
V = 7, p-value = 0.2969
alternative hypothesis: true location shift is not equal to 0

- Kruskal – Wallis: test for k independent samples. Example:

> c<-c(17.71,19.95,18.52,18.44,19.26,15.89,21.51)
> groups<-list(a,b,c)
> kruskal.test(groups)

Kruskal-Wallis rank sum test

data: groups

47

Kruskal-Wallis chi-squared = 10.5603, df = 2, p-value = 0.005092

B. Homogeneity
B.2 Qualitative variables
B.2.1 Non parametric

- Chi – square test for independent polytomous variables: it is basically the same as the
one used with quantitative variables, because uses frequencies from a contingency table.
The difference is that here the frequencies are of categorical variables. Example: with the
data set Titanic, we are going to test whether the survival of Titanic adult passengers is
influenced by the categories of two qualitative variables: sex and class. The data set
comes in an array with four strata: for not surviving child, not surviving adults, surviving
child and surviving adults.

> data(Titanic)
> Titanic
, , Age = Child, Survived = No

 Sex
Class Male Female
 1st 0 0
 2nd 0 0
 3rd 35 17
 Crew 0 0

, , Age = Adult, Survived = No

 Sex
Class Male Female
 1st 118 4
 2nd 154 13
 3rd 387 89
 Crew 670 3

, , Age = Child, Survived = Yes

 Sex
Class Male Female
 1st 5 1
 2nd 11 13
 3rd 13 14
 Crew 0 0

, , Age = Adult, Survived = Yes

 Sex
Class Male Female
 1st 57 140
 2nd 14 80
 3rd 75 76
 Crew 192 20

We have to use only the last matrix for our test:

48

> ct<-Titanic[,,Age="Adult",Survived="Yes"]
> chisq.test(ct)

Pearson's Chi-squared test

data: ct
X-squared = 220.3731, df = 3, p-value < 2.2e-16

So, the combination of factors influenced the probability of survival in adults.

- Fischer test for independent dichotomous variables: With dichotomous variables (i.e.: 2x2
contingency tables). It is better not to use the previous chi – squared test. We should
better use the present one, the “Fischer exact test”. Example: with the same precious data,
we would like to see if there were differences in survival between the 1st class passengers
and the crew:

> ct2<-ct[c(1,4),]
> ct2
 Sex
Class Male Female
 1st 57 140
 Crew 192 20
> chisq.test(ct2)

Pearson's Chi-squared test with Yates' continuity correction

data: ct2
X-squared = 160.2842, df = 1, p-value < 2.2e-16

So differences were found also in this case.

- Friedman's Anova for dependent polytomous variables: it is called “Anova” because of its
use, similar as the formerly called “repeated measures Anova” (nowadays, a repeated
measures Anova is a general linear model with individual as random factor, as we will
further see). It could be used as well with quantitative dependent variables, as a sort of
non – parametric repeated measures Anova. We will see an example of this later case: we
have 20 wine tasters and 3 wines. We want to know if each wine is being consistently
being rated with higher or lower scores than the other ones (we could also do it in the
opposite sense: test if the wine tasters are giving consistently different rates to all the
wines):

> data<-read.csv2("wine.csv")
> head(data)
 X Taste Wine Taster
1 1 5.40 Wine A 1
2 2 5.50 Wine B 1
3 3 5.55 Wine C 1
4 4 5.85 Wine A 2
5 5 5.70 Wine B 2
6 6 5.75 Wine C 2
> friedman.test(data$Taste,data$Wine,data$Taster)

49

Friedman rank sum test

data: data$Taste, data$Wine and data$Taster
Friedman chi-squared = 8.4416, df = 2, p-value = 0.01469

- Cochran's Q test for dependent dichotomous variables: Version of the previous one for
dependent variables with two possible outcomes. Example (directly from the function's
help):
The dependent or response variable has only 2 possible values (1 or 0)

> require(RVAideMemoire)
> response <- c(0,1,1,0,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,1)
> fact <- gl(3,1,30,labels=LETTERS[1:3])
> block <- gl(10,3,labels=letters[1:10])
> cochran.qtest(response~fact|block)

Cochran's Q test

data: response by fact, block = block
Q = 10.8889, df = 2, p-value = 0.00432
alternative hypothesis: true difference in probabilities is not equal to 0
sample estimates:
proba in group A proba in group B proba in group C
 0.2 0.5 1.0

 Pairwise comparisons by using Wilcoxon sign test

 A B
B 0.37500 -
C 0.02344 0.09375

P value adjustment method: fdr

50

Section 3: GLM

Contents

3.1 General linear model I

3.2 General linear model II

3.3 General linear model III

51

3.1 General Linear model I

The general linear model (GLM) is a frame for the statistical analysis and inference for the
study of linear relationships between a response variable and one or several predictor
variables. It is a generalization of simple and multiple linear regression in order to
incorporate categorical factors and complex designs, like nested designs, random factors,
etc. The response variable is often called the dependent variable and the predictor
variables independent variables.
We depart from a sample of individuals that have one measurable property that is the
dependent or response variable. We want to predict the values of that property from a
linear combination of other variables, the independent variables.
The independent variables could be factors or covariates. Factors are variables structured
in levels, for instance, three different types of diet. Covariates are not structured in levels
and they are numeric, for instance, time is a common covariate in many general linear
models. Their effect is always additive (this means that they can not interact with other
independent variables, we will see later what does this mean).
However, this terminology is confusing and in some statisticians use the term “covariate”
for any kind of independent variable.

Formulation

The general formulation for a linear model of this kind would be the following:

Where Y is a vector with the values of the dependent variable. ß0 is the intercept of the
model, ß1... ßn are the vectors of the model coefficients for each independent or predictor
variable (if the predictor is a factor, there will be n – 1 coefficients for that factor, being n
the number of factor levels, if the predictor is a covariate, there is a single coefficient for it)
X1 … Xn are the vectors with the values of the independent or predictor variables (if it is a
factor, each value is a level, and if it is a covariate, a single numerical value) and ϵ is the
vector of the residual errors of the model.
The residual error is, as we already know, the difference between the observed values and
the predicted or fitted values

Assumptions

The assumptions are related with those of the linear regression, and are tested in the
same way, except the homoscedasticity.

- Linear relationship (or linearizable).
- Independence of predictor variables. This can be tested with simple regressions between
them or with the VIF (variance inflation factor) that we will discuss in the next example.
- Independence or no autocorrelation of the values of the response variable.
- Normal distribution of residual error.
- Homogeneity of variances. The homogeneity has to be between groups of factor levels, it

52

is related with the normality of the errors. It is usually tested with Levene's test.
- Homogeneity of slopes: only when a covariate is included. We will explain this in detail
later.

There are two main steps when we analyze data with a general linear model:

A) Fit of the linear model: this is analogous to a linear regression fit. The values of the ßi
coefficient from the equation above are obtained, and a t – test will tell us if these
coefficients are significantly different of 0. Usually, if one or several model terms do not
show any significant coefficient, we could remove them from the model. Then, our final
model would have only significant terms. The fact that the model terms are significant
simply mean that there is a relationship between the response variable and the predictors.
Nothing else. Graphically, what we are doing is this:

B) Analysis of variance. The main purpose of a linear model in many cases is to detect
significant effects of the factors, among factor levels. The linear model that we fitted in the
previous step does not tell us anything about it (although, if the coefficients of a factor are
highly significant, usually happens that the factor levels have significantly different values
of the response variable). The analysis of variance will tell us if the differences between
groups are significant. But we previously need to fit a linear model in order to accomplish
with the assumptions under which the analysis of variance works. The differences in
variance are analyzed with the Fischer – Snedecor F contrast statistic (remember, this is a
ratio of total or between groups variance versus within groups variance). The effects of
each predictor variable independently, are called Main effects. Graphically, what we are
doing at this step is checking if the variances between factor levels like the following, are
different:

After the Anova, we might be interested in comparing which levels inside a factor are
significantly different from others in pair – wise combinations. This is called “post – hoc
test”. Usually, they are performed with contrast statistic that test the difference between
means (similar to a Student's t). The effects of these pairwise comparisons of factor levels
are sometimes called simple effects.

53

“Ugly” example (file R.S3.1)

We are going to start with a simple example of linear model with the iris data set. If we look
at the plot from the example of linear regression, we might think that there is a linear
relationship that could predict the petal length from the petal width, with certain influence of
the species. So, we are going to construct a linear model that aims to predict the petal
length (our response or dependent variable) with petal width (a predictor or independent
variable that is a numeric covariate) and the species (a predictor or independent variable
that is a factor with three levels: setosa, versicolor and virginica). So the first things we do
are loading the data and defining the model with the lm() function:

> data(iris)
> mod1<-lm(Petal.Length~Petal.Width*Species,data=iris)

It is time to talk about the interactions, an important term of the linear models that governs
the way the predictors interact between them and with the response variable.
In the linear models, the type of interaction expected between variables is linear. “linear” in
this context is equivalent to “additive”. This means that if we increase n units in the value
of the predictor, the value of the response will increase ßn units (remember ß is the
coefficient of that predictor, like the slope of a linear regression). So, if we increase 2 units
in the predictor, the response will increase ß0 + ß12 units, if we increase 3 units in the
predictor, this yields an increase of ß0 + ß13 in the response... and so on. So this is a
linear, additive relationship.
When two predictors that separately have a linear relationship with the dependent variable,
if put together in an experimental design do not show a linear relationship with the
response variable, we say that there is a significant interaction between the predictors.
Without interaction, the value of the response variable can be estimated through the
additive effect of each predictor separately. Imagine that there is one increase of 2 units in
the first predictor and 3 units in the second predictor. Then, the value of the response must
be equal to ß0 + ß12 + ß23. As you can see, just the addition of the effect of the two
predictors (additive effect). So when the effect that we observe is not explained by an
addition, rather it is a multiplicative effect, or other non – linear kind of effect, we say there
is an interaction. It is the same as a synergy.
Here is an imaginary example of interaction: we study the effect of diet and temperature in
the size at maturity of fish. We know that there is a linear positive effect of temperature in
the growth of fish. Then, we have different diets, one control and others with different
concentrations of a vitamin supplement. We know that these vitamin supplements have, as
well, a positive linear effect on the size of fish. But now, imagine that these vitamin
supplements are not equally effective across all the range of temperatures that we have.
The higher the temperature, the faster the vitamins degrade, and then they will be less
available for the fish. In this case, there will be an interaction between temperature and
diet, in a way that with an increase in temperature, the positive effect of vitamins is
reduced. Then, we can not predict the final effect of both variables as an additive effect,
because the high temperature data do not fit the additive effect. In summary, the
relationship between fish size and diet would not be linear if we include data from high
temperatures.
The problem of having interactions is that they compromise our interpretation of the results
from a linear model. With an interaction in the model, we can not interpret the effects of
each predictor separately, because they are influenced by other predictors. So we can not

54

interpret our Main effects. What we can do is to check the Simple effects with a post-hoc
test, or by looking at the model coefficients, and then try to see how the interactions are
working at each level of the predictors. At some of these levels, there might be still a
additive effect, and not so in others.
So, when we start fitting a model, we have to include, at the beginning, all the possible
interactions. Later, we will test with the Anova if those interactions are significant or not. If
they are not significant, we must remove them from the model formula (as we would do
with any other model term).
An interaction is a term of the model formula that has its own coefficient as well, in fact, it
is considered as a new predictor.

*A brief note on the homogeneity of slopes (if there were covariates in the model).
Remember that a “pure” covariate, apart from being numeric, it is always additive, never
interacts with other predictors. So if we want to include a covariate, we have to test its
interaction as well. If it interacts, this means that the slopes of the additive effect of the
covariate are not homogeneous between groups. There are some specific tests for this,
but, testing directly the interaction term is valid, and the most common way to do it.

Here is a graphic explanation of what the concept of interaction:

These plots show how would look like the lines that go across the mean values of the
dependent or response variable on each level of the factors. On the left, we have “Main
effects” for both factor A and factor B. this means that from level 1 to 3 of factor A there is a
positive effect on the response variable (all the three lines show this effect). There is also a
positive effect of factor B, because each level of B shows a line that is “higher” than the
other. However, these lines are all parallel. This means that the effects are all additive, and
there is no interaction. On the right, we can see how the line of the level 3 of factor B is not
parallel to the others. This means that there is an interaction of factor A x factor B (in this
example yellow line is crossing the others, but it does not have to cross them to be an
interaction, just not being parallel).

How do we code interactions in R? It is very simple. The symbol “*” indicates that we
consider all the possible interactions between the variables that have that sign. The
symbol “:” indicates that we will consider only interactions of order 2 (all the pairwise
combinations of predictors). The symbol “^n” indicates that we only want to consider the

55

Level 1A Level 2A Level 3A
0

2

4

6

8

10

12

No interaction factor A x factor B

Level 1B
Level 2B
Level 3B

Level 1A Level 2A Level 3A
0

2

4

6

8

10

Interaction factor A x factor B

Level 1B
Level 2B
Level 3B

interactions from degree 2 to degree “n”. The symbol “+” indicates only additive effects, so
no interactions at all. Look at the examples on page 3 to see how they are coded.
In our example, we have only two predictors, so only the interaction of degree 2 is
possible, then it is not relevant which sign to use.
Now, let's have a look at the results of the model fit:

> summary(mod1)

Call:
lm(formula = Petal.Length ~ Petal.Width * Species, data = iris)

Residuals:
 Min 1Q Median 3Q Max
-0.84099 -0.19343 -0.03686 0.16314 1.17065

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3276 0.1309 10.139 < 2e-16 ***
Petal.Width 0.5465 0.4900 1.115 0.2666
Speciesversicolor 0.4537 0.3737 1.214 0.2267
Speciesvirginica 2.9131 0.4060 7.175 3.53e-11 ***
Petal.Width:Speciesversicolor 1.3228 0.5552 2.382 0.0185 *
Petal.Width:Speciesvirginica 0.1008 0.5248 0.192 0.8480

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3615 on 144 degrees of freedom
Multiple R-squared: 0.9595, Adjusted R-squared: 0.9581
F-statistic: 681.9 on 5 and 144 DF, p-value: < 2.2e-16

In the main table are shown the values and statistical significances of the model
coefficients. The intercept is significant. The coefficient for petal width is not significant.
There are two coefficients for the predictor “species”. One is significant (for the species
virginica) the other, for the species versicolor, is not. For the interaction, only the
coefficient for versicolor is significant. As you may have noticed, the coefficients of a single
predictor are always 1 if it is a numeric predictor (covariate) or n-1, being n the number of
levels if the predictor is a factor structured in levels. Our factor “species” has three levels,
so it shows two coefficients. This “n-1” number of coefficients is due to one restriction that
the linear models have in order to make easier the fit of the model terms. They need to
assume that one of the coefficients has value 1 or 0. Then, the others are expressed
relative to that one. This level for which the coefficient is equal to 0 or 1 is called the
“dummy variable”. The dummy variable is assigned in lm() by default. The value of its
coefficient is, also by default, 0. these default settings can be changed, but we are not
going to deal with this now.
So now we can better interpret our coefficients (forget for now whether I they are
significant or not):
For petal width: an increase in one unit of Petal width increases 0.5465 units of petal
length.
For the factor “species”: belonging to the species virginica makes your petal length
increase 2.9131 times units more than belonging to setosa (the dummy variable), and
belonging to the species versicolor makes your petal length to increase 0.4537 units more

56

than belonging to the species setosa.
For the interaction: the effect in one unit of petal width if belonging to the species
versicolor increases 1.3228 times the multiplication of their coefficients as individual effects
(0.5465 x 0.4537). And the equivalent for the other interaction coefficient.
We already know how to interpret the remaining information from this output (remember
the linear regression example).
Remember what we said above about the interactions and covariates. If the covariate has
a significant interaction with the other predictor, we can not drive strong conclusions about
its effect. Later, we will se with an Anova if the interaction is significant or not.
Now, we have to continue working with this model.
Before inferring if the effects of the predictors are significant, we have to test first, if the
model agrees with the assumptions needed for linear models (normality and
homoscedasticity). Before performing specific tests, we could have a look at relevant plots
in order to see what the model residuals tell us.

> plot(mod1)

First, we will have a look to the standardized residuals versus fitted values. Remember
that this plot should look like a flat line with homogeneous dispersion across all its range:

It looks good except for a few values in the upper right corner that show higher dispersion
than the rest of the residuals. The number indicates the position that these data have in
their vector (column) of the data frame. There are no weird trends in this plot, it is mainly
flat, so it does not seem that we are missing any predictor variable here.
Now, a QQ plot will tell us if the residuals seem to follow a normal distribution or not. If so,
they must be close to the diagonal of the plot:

57

The same as before, it looks good except for a few data in the right corner, these data are
the same. Looking at this plot, I bet these residuals are not normal, but we will test it later.
The following plot shows the “leverage” effect of each data and the isoclines of “Cook
distance”.The leverage shows how far is one data from the average predictor values. The
ideal situation is that all the data had low “leverage” effect. As you could imagine, looking
at the leverage helps to detect outliers. The magnitude called “Cook distance” tells us how
much one specific data is influencing the model fit. We do not want data with high values
of Cook distance because, ideally, all of our data should contribute the same to our model.
There is no specific limit between “good” and “bad” Cook distance. We just do not want a
big dispersion. Outliers also have usually relatively high values of Cook distance.

As we can see, very few data have higher leverage, perhaps only one. But this one is not
among those data the showed problems in the two previous plots of normality and residual
dispersion. Regarding Cook distance, the outlier has relatively high Cook distance, but
also the data that showed problems in the previous plots are close to the isocline of 0.5.
As a conclusion, it seems that we will have problems with normality and homoscedasticity,

58

but because both are due to the same data, if we can fix normality, we will probably fix th
homoscedasticity problem as well. I would say there is one single outlier, but does not
seem to be a problem here.
Removing outliers from a data set is something that could be done when manipulating
data, but we must have good reasons to do it. Here we there are no such good reasons.
Now we are going to start applying direct tests for our assumptions. First, the most
important, the normality test:

> res<-residuals(mod1)
> shapiro.test(res)

Shapiro-Wilk normality test

data: res
W = 0.9585, p-value = 0.0001771

Residuals do not follow Normal distribution, so we have to fix this problem. And as we
know, it is not a problem due to the presence of outliers. Then, we have to try at
transforming the variable. You might have heard about log transformation of data, power
transformation, root transformation... we might try to apply each of these transformations
separately to our data, and see which yields a normal distribution of the residuals.
However, there is a more efficient way to proceed. This consists in using the Box-Cox
function. This function is actually a family of transformations whose form depends on the
value of a parameter called λ. There is a value of λ that optimizes the transformation of our
variable in order to get Normal distribution. The goal is to find this value of the parameter.
If λ = 0, then the transformation to apply would be Ln(Y). other values of λ equal other kind
of transformations. So the Box-Cox function contains most of the possible transformations
in one single expression, from which you have to find the optimal. The only problem is that
the response variable has to be greater than 0. But this can be solved by rescaling the
variable with the addition of a single integer number that makes all the values of Y greater
than 0.
we are going to find the optimal value of λ for our response variable. We will do it
graphically, which is usually enough. First, we load the package MASS, which contains the
function boxcox(). This function gives us the likelihood that certain values of λ will
normalize our data. Obviously we want the value of λ with highest likelihood. Then, we
apply the function to the model object. The second and third arguments are the range of λ
over which to calculate its likelihood, and the fourth argument is the step size of the
sequence:

> require(MASS)
> likelyfunct<-boxcox(mod1,lambda=seq(-5,5,0.01))

First, we should better have a general overview of the function, in order to locate its
maximum. Then we will get closer to the maximum value. So we start with a wide range of
λ, from -5 to 5, so that we clearly locate the maximum. We also use a large step size,
(0.01) because we do not need accuracy now, and small step sizes take more time for the
calculations. This is plot that we obtain:

59

The optimal value of λ lies somewhere between 0 and 0.4. So we are going to narrow the
range of λ now and increase the accuracy of the step size:

> likelyfunct<-boxcox(mod1,lambda=seq(0,0.4,0.0001))

This is the plot we obtain:

So we can now proceed with the following code, that simply will extract the optimal value
of λ (that we will call “lambdaT”):

> functX<-likelyfunct$x
> functY<-likelyfunct$y
> maxY<-max(functY)
> XmaxY<-which(functY==maxY)
> lambdaT<-functX[XmaxY]

Now, we apply the Box – Cox formula with the “lambdaT”. And we obtain the new,
transformed, variable, that we will call “vartrans”:

> vartrans<-(((iris$Petal.Length)^lambdaT)-1)/(lambdaT)
Now, we fit a new model with this transformed variable:

60

> mod2<-lm(vartrans~Petal.Width*Species,data=iris)
> summary(mod2)

Call:
lm(formula = vartrans ~ Petal.Width * Species)

Residuals:
 Min 1Q Median 3Q Max
-0.37258 -0.06459 -0.01056 0.06980 0.32002

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.29105 0.04463 6.522 1.10e-09 ***
Petal.Width 0.40765 0.16701 2.441 0.0159 *
Speciesversicolor 0.59021 0.12737 4.634 7.96e-06 ***
Speciesvirginica 1.45636 0.13839 10.524 < 2e-16 ***
Petal.Width:iris$Speciesversicolor 0.22400 0.18924 1.184 0.2385
Petal.Width:iris$Speciesvirginica -0.23170 0.17888 -1.295 0.1973

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1232 on 144 degrees of freedom
Multiple R-squared: 0.9739, Adjusted R-squared: 0.973
F-statistic: 1076 on 5 and 144 DF, p-value: < 2.2e-16

Things have changed a bit with this new model. In order to interpret this output, proceed
as we did above.
Now we can check the same plots as before. See how they look better now:

61

Now, we are going to apply our usual Normality test:

> res2<-residuals(mod2)
> shapiro.test(res2)

Shapiro-Wilk normality test

data: res2
W = 0.9907, p-value = 0.4322

Residuals do follow a normal distribution now. So it is time to continue checking the
assumptions. Now, the homogeneity of variance among groups. This is performed with
Levene's test. There is a function for this test in the car package:

> require(car)
> leveneTest(res2,iris$Species)
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 2 2.6851 0.07156 .
 147

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variances are homogeneous. So we are fine with this model. Now we can go the
Anova, in order to infer if our predictors have a significant effect.
First, a brief overview of the foundations of the analysis of variance (Anova). This analysis
can be applied to normal and homoscedastic data. As a protocol, it has been established
that we need at least 30 data, so that our assumptions of Normality etc. could be taken
seriously. What this test does is the calculation a ratio of two variances, which is the
contrast statistic called F (from Fischer). This is its formula:

Where RSS are the residual sum of squares, and df are degrees of freedom.
This formula relies on the partition of the total variance into two main groups (in the
simplest case) the between – groups variance, defined by the treatment combinations
(RSSTreatments= ∑(yi – ȳ)2, where yi is the average of each group or combination of factors,
and ȳ is the total average), which is obviously due to the treatment effect. And, the within –
groups variance or residual variance, inside those previous groups, due to differences
between individual replicates (RSSError= ∑(yij – yi)2, where yij is the value of y for each
individual replicate, and yi is again the average of each group or combination of factors).
This within – groups variance is explained by sampling error or actual differences between
individuals). These two RSS, for the F formula, have to be scaled relative to the number of
elements that they apply to (df of treatments, that scales for the free dimensions from the
total number of groups, and the df of Error, or Residual, that scales for the total number of
free dimensions in the residuals, from the total number of individual replicates).
This contrast statistic follows its own probability distribution (F distribution) under the null
hypothesis that there are no differences between groups. No differences between groups

62

mean that the variance between groups is the same as the variance within groups. So
small values of F mean small differences between groups and high values of F mean large
differences between groups. The F probability distribution has low probabilities for the
larger values of F. So the larger the value of F, the larger the probability of finding
significant differences. This is how an Anova applied to our model result:

> Anova(mod2)
Anova Table (Type II tests)

Response: vartrans
 Sum Sq Df F value Pr(>F)
Petal.Width 0.7044 1 46.4106 2.421e-10 ***
Species 5.1220 2 168.7298 < 2.2e-16 ***
Petal.Width:iris$Species 0.2649 2 8.7277 0.0002644 ***
Residuals 2.1857 144

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All the factors in the model are strongly significant, so we should not eliminate any of them.
What this means is that petal width and species can predict petal length. The problem is
that the interaction is also significant, so it is not possible to analyze the effect of each
variable separately. Instead, we should better have a look of the interaction plots. In this
case is simple because the interactions are of second order only, so we need a two – way
interaction plot:

> interaction.plot(iris$Petal.Width,iris$Species,vartrans)

If there was no interaction, all the lines showing the change in petal length (vartrans) from
the species versicolor to virginica would be approximately parallel, because the predictor
“species” would have the same effect in petal length (either increasing or decreasing its
value). In that case, the effects would be additive. But if the lines had remarkably different
slopes, then, it means that the effect is not additive, hence, there is an interaction. Here we

63

can see how the slopes of the lines do not seem to be parallel. When the lines have slopes
of different sign, this undoubtedly shows an interaction. In our data, mainly, belonging to
the species virginica means having larger petal length irrespective of petal width. But there
is one clear exception, with the opposite trend for one (or several, we can not see well)
value of petal width. Then, we can not say: “the effect of species is positive from versicolor
to virginica” because it depends on the value of petal width. Regarding our other predictor,
we can say, that petal width has, individually, a positive effect on length. But this effect is
different and not proportional between species. The slope of the positive effect of petal
width is not the same between the levels of the other factor. So we can say “the effect of
petal width is positive” but not “the effect of petal width is homogeneous”.

What does all this mean in conclusion? It means that we are limited regarding our
conclusions. Some statisticians would say that a covariate that interacts with a factor
should not be included in a model because the slopes between factor groups are not
homogeneous. In addition, we can not conclude about the single effect effect of the factor
“species” because it depends on the covariate. So, we may say that we do not have any
conclusion from our model, except that both predictor variables have influence in the
response variable, and that the model can predict the response variable significantly.

It is very common, in linear models, to test specifically the differences between pair – wise
comparisons of factor levels. Because we might be interested in knowing which levels
have significantly smaller or larger values of the response variable. This are known as
“Post – hoc comparisons”. They could be performed with different tests, depending on your
needs. For instance, there is the Dunnett test, that compares each factor level against a
single control group, or the Tukey test, that makes all the possible pair – wise
comparisons. We are going to see an example with our data. Although in our data does
not have so much sense to compare the factor levels, from the point of view of the
interpretation, because of the presence of the interaction. There are several functions that
can perform this task in R. We are going to use glht() (from general linear hypothesis
testing) from the package multcomp, because it can be applied to objects of many different
classes:

> require(multcomp)
> summary(glht(mod2,linfct=mcp(Species="Tukey")))

 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = vartrans ~ Petal.Width * Species, data = iris)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
versicolor - setosa == 0 0.5902 0.1274 4.634 1.75e-05 ***
virginica - setosa == 0 1.4564 0.1384 10.524 < 1e-05 ***
virginica - versicolor == 0 0.8662 0.1772 4.889 < 1e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

64

Mensajes de aviso perdidos
In mcp2matrix(model, linfct = linfct) :
 covariate interactions found -- default contrast might be inappropriate

The test has found significant differences between all these groups. The estimate of the
difference is positive for versicolor – setosa, so versicolor has significantly greater petal
length than setosa. However, virginica has significantly higher average petal length than
both setosa and versicolor.

*Now, just a short note about how to save the diagnostic plots of the model, or any plot
that comes in sequential windows. It is easy, just remember from the introduction the
sequence function-for-the-format(“file-name.extension”) → code of the plot → dev.off()

#Model
> mod<-lm(Petal.Length~Petal.Width*Species,data=iris)

#One way to do it
> pdf("DiagPlot1.pdf")
> par(mfrow=c(2,2))
> plot(mod)
> dev.off()

#Other way to do it
> pdf("DiagPlot2.pdf")
> plot(mod)
> dev.off()

“Easier” example (file R.S3.2)

In the previous example, the model gets complicated to interpret because of the interaction
between the covariate and the factor. Interactions complicate the interpretation and
treatment of models, but they are usually very interesting from the point of view of
research. In the next example, we are going to work with a model in which things go
smoother. What we have is a dependent or response variable which is the mg per dL of
Cholesterol in blood measured in 720 individuals. These individuals were classified
according to their age, gender and physical condition (into four ad hoc groups).
First, we load the data set:

> data<-read.csv2("Cholesterol.csv",sep=";")
> head(data)
 X Chol.Blood Age Gender Physical.condition Hospital District
1 1 214.8251 57 M A H1 Porto
2 2 203.5490 45 F A H1 Porto
3 3 221.5127 68 F A H1 Porto
4 4 195.1060 43 F A H1 Porto
5 5 193.9155 36 F A H1 Porto
6 6 200.1424 34 F A H1 Porto

Now we code a linear model, in principle, considering all possible interactions. We have a
covariate (Age) and the rest are factors structured in 2 (gender) and 4 (Physical condition)
levels:

65

> mod1<-lm(Chol.Blood~Gender*Physical.condition*Age,data=data)
> summary(mod1)

Call:
lm(formula = Chol.Blood ~ Gender * Physical.condition * Age,
 data = data)

Residuals:
 Min 1Q Median 3Q Max
-23.353 -5.911 -0.152 5.780 26.059

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 177.613021 3.954843 44.910 < 2e-16 ***
GenderM 18.060453 5.708270 3.164 0.001624 **
Physical.conditionB 22.115571 5.905822 3.745 0.000195 ***
Physical.conditionC 42.172410 5.762086 7.319 6.84e-13 ***
Physical.conditionD 37.389494 5.957568 6.276 6.07e-10 ***
Age 0.378012 0.085866 4.402 1.24e-05 ***
GenderM:Physical.conditionB -3.009284 8.435698 -0.357 0.721399
GenderM:Physical.conditionC -15.334081 8.227008 -1.864 0.062756 .
GenderM:Physical.conditionD 0.891920 8.334936 0.107 0.914812
GenderM:Age -0.224836 0.125463 -1.792 0.073553 .
Physical.conditionB:Age -0.081420 0.128707 -0.633 0.527201
Physical.conditionC:Age -0.187814 0.125593 -1.495 0.135253
Physical.conditionD:Age 0.007665 0.128890 0.059 0.952594
GenderM:Physical.conditionB:Age 0.120622 0.185887 0.649 0.516615
GenderM:Physical.conditionC:Age 0.371351 0.179752 2.066 0.039203 *
GenderM:Physical.conditionD:Age 0.062962 0.183417 0.343 0.731498

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.745 on 704 degrees of freedom
Multiple R-squared: 0.7816, Adjusted R-squared: 0.7769
F-statistic: 167.9 on 15 and 704 DF, p-value: < 2.2e-16

Looks like covariate and factors are significant, and less the interaction coefficients, but we
will confirm that with an Anova. We can check now the validity of the model with the plots
and tests:

66

The plots look very good in this case. Now, let's proceed with the tests for Normality and
homoscedasticity:

> res<-residuals(mod1)
> shapiro.test(res)

Shapiro-Wilk normality test

data: res
W = 0.9984, p-value = 0.765

Residuals are normal.

> require(car)
> leveneTest(Chol.Blood~Gender*Physical.condition,data=data)
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 7 1.5445 0.1491
 712

The variances are homoscedastic among the levels of the two factors. Note that in this
case, because we have two factors, we have to “cross” the levels of the two factors, so
each group over which we are testing the homogeneity of variances is each combination of

67

the two factors.
So, we can proceed with the Anova:

> Anova(mod1)
Anova Table (Type II tests)

Response: Chol.Blood
 Sum Sq Df F value Pr(>F)
Gender 17531 1 229.2511 < 2.2e-16 ***
Physical.condition 170340 3 742.5210 < 2.2e-16 ***
Age 5258 1 68.7545 5.652e-16 ***
Gender:Physical.condition 328 3 1.4317 0.2323
Gender:Age 132 1 1.7216 0.1899
Physical.condition:Age 30 3 0.1308 0.9418
Gender:Physical.condition:Age 369 3 1.6088 0.1860
Residuals 53834 704

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

None of the interactions is significant, either of second or third order. In the two-ways
interaction plots, we can check how the lines of the effects are parallel. We are only
showing here the plot for the Gender:Physical.condition interaction, since it is the easiest
to see:

> interaction.plot(data$Gender,data$Physical.condition,data$Chol.Blood)

So we should better reformulate the model with only additive effects:

> mod2<-lm(Chol.Blood~Gender+Physical.condition+Age,data=data)
> summary(mod2)

Call:
lm(formula = Chol.Blood ~ Gender + Physical.condition + Age,
 data = data)

68

Residuals:
 Min 1Q Median 3Q Max
-25.0042 -5.9956 0.0571 6.0859 26.5351

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.55458 1.63698 110.91 < 2e-16 ***
GenderM 9.89249 0.65380 15.13 < 2e-16 ***
Physical.conditionB 19.66610 0.92254 21.32 < 2e-16 ***
Physical.conditionC 34.40663 0.92324 37.27 < 2e-16 ***
Physical.conditionD 39.65073 0.92257 42.98 < 2e-16 ***
Age 0.26973 0.03273 8.24 8.23e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.752 on 714 degrees of freedom
Multiple R-squared: 0.7781, Adjusted R-squared: 0.7765
F-statistic: 500.7 on 5 and 714 DF, p-value: < 2.2e-16

So we keep only the most significant model terms. The plots would not change a lot this
time. We repeat the Anova with this new model:

> Anova(mod2)
Anova Table (Type II tests)

Response: Chol.Blood
 Sum Sq Df F value Pr(>F)
Gender 17535 1 228.940 < 2.2e-16 ***
Physical.condition 170382 3 741.519 < 2.2e-16 ***
Age 5200 1 67.897 8.229e-16 ***
Residuals 54686 714

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All the factors as well as the covariate are strongly significant.

How to test linear independence between predictors

We may use this example now for testing dependence between predictors. As we
mentioned in the assumptions for general linear models, predictors should be linearly
independent. This is also true for multiple regression. This linear independence could be
tested simply with pair-wise correlations. But it is often performed with the Variance
Inflation factor (VIF). VIF is an index that estimates how much the variance explained is
increased by multicollinearity:

> require(car)
> vif(mod2)
 GVIF Df GVIF^(1/(2*Df))
Gender 1.004570 1 1.002283
Physical.condition 1.003354 3 1.000558
Age 1.002458 1 1.001228

69

The VIF values are very low, so we d not should worry about multicolinearity in this case.
There is no specific upper limit for the value of VIF, above which we should exclude a
variable. Values above 4 – 5 are usually considered problematic.

How to simplify models with a step method

All our predictors have highly significant effects according to the Anova. However, when
we have a model with several predictor factors, it is often good to perform some sort of test
that tells us if some predictors do not significantly improve the fitting of the model. We can
simply do it comparing the AIC values (see the example of non – linear regression) of
models starting without factors (only the intercept) and adding one factor each time. The
model with significantly lower AIC is the best. Some functions perform this process
automatically:

> step(mod2)
Start: AIC=3129.69
Chol.Blood ~ Gender + Physical.condition + Age

 Df Sum of Sq RSS AIC
<none> 54686 3129.7
- Age 1 5200 59887 3193.1
- Gender 1 17535 72221 3327.9
- Physical.condition 3 170382 225069 4142.3

Call:
lm(formula = Chol.Blood ~ Gender + Physical.condition + Age,
 data = data)

Coefficients:
 (Intercept) GenderM Physical.conditionB Physical.conditionC
 181.5546 9.8925 19.6661 34.4066
Physical.conditionD Age
 39.6507 0.2697

This function, step(), in this case by default used a backward method (this default can be
modified, of course). So it starts with a full model, and then eliminates step by step, all
other predictors. The best model in terms of AIC is still that one with all the predictors.
Among the predictors, the one that yields a larger drop in AIC when removed is the
Physical condition. So this is probably the most important predictor.
*It is important to say here that the AIC is calculated here a bit in a different way than with
the function AIC(), so the values are not the same.

Post – hoc tests

Now that we have our “right” model ready, we might be interested in performing a post –
hoc test in order to test for differences between factor levels. We are going to use the
same functions as in the previous example:

70

> require(multcomp)
> summary(glht(mod2,linfct=mcp(Gender="Tukey")))

 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Chol.Blood ~ Gender + Physical.condition + Age,
 data = data)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
M - F == 0 9.8925 0.6538 15.13 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

> summary(glht(mod2,linfct=mcp(Physical.condition="Tukey")))

 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lm(formula = Chol.Blood ~ Gender + Physical.condition + Age,
 data = data)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
B - A == 0 19.6661 0.9225 21.317 <1e-07 ***
C - A == 0 34.4066 0.9232 37.267 <1e-07 ***
D - A == 0 39.6507 0.9226 42.978 <1e-07 ***
C - B == 0 14.7405 0.9235 15.961 <1e-07 ***
D - B == 0 19.9846 0.9225 21.663 <1e-07 ***
D - C == 0 5.2441 0.9237 5.677 <1e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

All the pair – wise comparisons between factor levels resulted with significantly different
values.

71

3.2 General Linear model II

Mixed effects models (file R.S3.3)

Now, we are going to show a new feature of general linear models: the possibility of
including random factors in the analysis. What we have been working with so far were
fixed factors. These factors are those that include all the possible levels of a factor, like
Gender in our previous example. Or, those that are defined experimentally by the
researcher. Random factors are those whose levels in our experiments do not represent all
the existing levels, or those that might be affecting our data in a way that we can not
control, generating correlation structures within their levels.
The aim of including a random factor in a model is not testing any hypothesis about its
effect. It is simply getting rid of the variance due to the autocorrelation within its levels. So
they are treated differently than the fixed factors. Using at the same time fixed and random
factors is the reason why these models are often called “mixed effects models”.
Previous techniques such as the “repeated measures Anova” are now included in the
frame of the General Linear Model as a kind of mixed effects model.
In order to see an example, we are going to use the same data set as in the previous one.
And, we are going to include the random factor “Hospital” in the analysis. “Hospital” could
be a random factor because it can produce autocorrelation in the values of the response
variable that were taken in the same hospital. We do not know it a priori, but we can test it
by including this random factor in the model. As you will understand, the hospitals that are
included in this analysis do not represent all the possible hospitals. So in principle, it is a
good candidate for a random factor.
There are several ways that random factors could be coded in R models. The most
common are performed with the function aov() from package stats, lme() from the package
nlme, and lmer() from the package lme4. In our example, we are going to use the function
lmer():

> require(lme4)
> mod3<-lmer(Chol.Blood~Gender+Physical.condition+Age+(1|Hospital),data=data)
> summary(mod3)
Linear mixed model fit by REML ['lmerMod']
Formula: Chol.Blood ~ Gender + Physical.condition + Age + (1 | Hospital)
 Data: data

REML criterion at convergence: 4473.4

Scaled residuals:
 Min 1Q Median 3Q Max
-2.9306 -0.6296 0.0022 0.6249 3.2678

Random effects:
 Groups Name Variance Std.Dev.
 Hospital (Intercept) 53.52 7.316
 Residual 27.16 5.211
Number of obs: 720, groups: Hospital, 12

Fixed effects:
 Estimate Std. Error t value
(Intercept) 181.05425 2.32788 77.78

72

GenderM 9.62741 0.39206 24.56
Physical.conditionB 19.66976 0.54936 35.81
Physical.conditionC 34.38542 0.54978 62.54
Physical.conditionD 39.65618 0.54938 72.18
Age 0.28405 0.01962 14.47

Correlation of Fixed Effects:
 (Intr) GendrM Phys.B Phys.C Phys.D
GenderM -0.099
Physcl.cndB -0.118 -0.008
Physcl.cndC -0.114 0.035 0.499
Physcl.cndD -0.118 -0.012 0.500 0.499
Age -0.377 0.036 0.001 -0.019 0.002

The output is very similar to that from lm(). This just gives some more information about
the correlation between factors (that we guess is not very important, after checking the
VIF). But the most relevant new information is related with the random factor. In the
“random effects” section appear the variance absorbed or explained by our random effect.
The word “intercept” appears because in our coding we included random effects for the
intercept only. So the variance explained by the random effects is quite large, larger than
the residual. So this is quite a good thing. We can have a look at the mode plot now. With
the function lmer(), only the residual vs fitted values plot is shown:

> plot(mod3)

This plot looks very good, but mod2 also looked good. Let's have a look at the analysis of
deviance, which in this case, of mixed effects models, is actually an analysis of deviance
(although the function Anova() performs it as well). The deviance estimates the goodness
of fit of a model. It is a generalization of the least squares used in Anova for cases where
the fit of the model is performed by maximum likelihood.

> Anova(mod3)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: Chol.Blood
 Chisq Df Pr(>Chisq)
Gender 602.98 1 < 2.2e-16 ***
Physical.condition 6271.25 3 < 2.2e-16 ***
Age 209.52 1 < 2.2e-16 ***

73

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The conclusion is very similar to that from the analysis of variance for mod2. In this table
the random factor does not appear, because we are not testing any hypothesis about the
random factor.
Now we have to choose which is the best model for these data, between mod2 and mod3.
In other words, if it is worth including a random effect to explain the variance for these
data. For this purpose, first, we could check the AIC values of both models:

> AIC(mod2)
[1] 5174.957
> AIC(mod3)
[1] 4489.386

The AIC for mod3 is much better. But it is better to check if the difference between these
values is significant. Because the models are nested, we can do it with a likelihood ratio
test. But, unfortunately, the function anova() does not work when comparing objects of
class lm and lmer together. So we have to do it “by hand”. We extract the log likelihood of
both models, we apply the formula of the D contrast statistic and the we calculate its
probability, that follows a chi – square distribution with the difference in model parameters
as degrees of freedom:

> logLik(mod2)
'log Lik.' -2580.479 (df=7)
> logLik(mod3)
'log Lik.' -2236.693 (df=8)
> Dmod2mod3<-(-2*-2580.479)+(2*-2237.039)
> pchisq(Dmod2mod3,df=1,lower.tail=F)
[1] 2.131929e-151

The difference is significant, so we keep mod3, with the random factor, as a better model
than mod2.

74

3.3 General linear model III

Nested design (or hierarchical) in the random factor (file R.S3.3)

The concept of nested or hierarchical design is important for many cases of linear models.
We say that factor 2 is nested into factor 1 when the levels of factor 1 are represented
associated with certain levels of factor 1. For instance, in the Cholesterol data from our
previous examples, we have the factor “Hospital” with 12 levels. But these 12 levels are
associated with another factor, the factor “District”. So that levels 1 to 4 are in level “Porto”,
5 to 8 in level “Aveiro” and 9 to 12 in level “Braga”. We can say then that factor “Hospital”
is then nested in the factor “District”. If data from the same hospital were distributed
through several districts (obviously impossible) then there would be no nested factors.

Nested factors could exist within fixed or random factors. A statistical test called “nested
Anova” is now performed inside the general frame of General Linear Model. They are
coded in different ways depending on the function. We are going to see an example with
our cholesterol data, where the factor “Hospital” is nested in “District”. Be always careful
with the notation of nested factors, because, independently of the function, they are always
notated from the “broadest” to the “narrowest” reading from the left to the right:

> mod4<-lmer(Chol.Blood~Gender+Physical.condition+Age+(1|District/Hospital),data=data)
> summary(mod4)
Linear mixed model fit by REML ['lmerMod']
Formula: Chol.Blood ~ Gender + Physical.condition + Age + (1 | District/Hospital)
 Data: data

REML criterion at convergence: 4473.4

Scaled residuals:
 Min 1Q Median 3Q Max
-2.9306 -0.6296 0.0022 0.6249 3.2678

Random effects:
 Groups Name Variance Std.Dev.
 Hospital:District (Intercept) 5.352e+01 7.316e+00
 District (Intercept) 6.453e-13 8.033e-07
 Residual 2.716e+01 5.211e+00
Number of obs: 720, groups: Hospital:District, 12; District, 3

Fixed effects:
 Estimate Std. Error t value

75

(Intercept) 181.05425 2.32788 77.78
GenderM 9.62741 0.39206 24.56
Physical.conditionB 19.66976 0.54936 35.81
Physical.conditionC 34.38542 0.54978 62.54
Physical.conditionD 39.65618 0.54938 72.18
Age 0.28405 0.01962 14.47

Correlation of Fixed Effects:
 (Intr) GendrM Phys.B Phys.C Phys.D
GenderM -0.099
Physcl.cndB -0.118 -0.008
Physcl.cndC -0.114 0.035 0.499
Physcl.cndD -0.118 -0.012 0.500 0.499
Age -0.377 0.036 0.001 -0.019 0.002
> Anova(mod4)
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: Chol.Blood
 Chisq Df Pr(>Chisq)
Gender 602.98 1 < 2.2e-16 ***
Physical.condition 6271.25 3 < 2.2e-16 ***
Age 209.52 1 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the output, we see that the variance absorbed by “District” is very low. So it seems that
this factor is not adding much to our model. Then, it is time to choose the best model
between mod3 and mod4:

> AIC(mod3)
[1] 4489.386
> AIC(mod4)
[1] 4491.386

The AIC for mod3 is already lower than for mod4. So we do not even need to perform the
log likelihood ratio test, since mod4 has more parameters than mod3. So the increase in
variance explained by mod4 with respect to mod3 (6.453-13) that obviously, can not
balance the penalty of having one more extra – parameter. So, for the Cholesterol data,
our best model is mod3. This model says that only the covariate, the fixed factors, and the
random factor “hospital” are significant. Let's have a look in s few plots how the influence
of these factors look like:

76

These plots confirm very well the results from our models. All the fixed factors clearly have
an effect. The effect of the covariate is, however, difficult to see because we plotted all the
data together. The random factor Hospital also has a clear and consistent effect. But, the
District where the hospitals are located has no influence at all.

Random slopes (file R.S3.3)

Briefly, we are going to analyze data from a data set in the datasets package. The data set
is named sleepstudy. The data consist in the evolution of the reaction time in a group of
individuals (soldiers) after been certain time without sleeping. Here is how the data look:

77

This graphical function xyplot() is a nice function from the library, or graphical package
lattice, that is installed by default, but not loaded. Here we can see how each individual
has its own “slope” for the increase in reaction time after days without sleeping. Then, we
can not use a single relationship of reaction time versus days without sleeping, because
there is each individual is different, has its own slope of reaction, there is this
autocorrelation within individual. This is an example of what could be called “random
slopes”. But, it is very similar to what is called a “repeated measures design” (old
“repeated measures anova”). So the individual is a random factor here.
*By the way, a very common way of calling random factors is “block factor”. Here, the
“blocks” are the individuals. In our previous example, the blocks were the Hospitals.

In the precious example (Cholesterol) the effect of the random factor could be on the
intercept, but not the slope. Here is a conceptual graphic scheme of this kind of model
desig, and below, the R code for our current example:

78 0

2

4

6

8

10

12

Different intercept same slope

Individual 1
Individual 2
Individual 3

> mod1<-lmer(Reaction~Days+(1|Subject),data=sleepstudy)

But it does not seem, looking at our data, that we are in that previous situation. However, it
I good to test the model anyways, and see how its fits the data compared to other model
alternatives.
It does not seem either that we are in a case where the effect is only in the slope but not in
the intercept:

> mod2<-lmer(Reaction~Days+(0+Days|Subject),data=sleepstudy)

It is more likely that our random factor affects both the slope and the intercept:

79

0

2

4

6

8

10

12

Same intercept different slope

Individual 1
Individual 2
Individual 3

2 3 4
0

2

4

6

8

10

12

Different intercept different slope

Individual 1
Individual 2
Individual 3

Intercept and slope correlated:

> mod3<-lmer(Reaction~Days+(Days|Subject),data=sleepstudy)

Intercept and slope not correlated:

> mod4<-lmer(Reaction~Days+(1|Subject)+(0+Days|Subject),data=sleepstudy)

Let's see what the AIC tells us about the best model:

> AIC(mod1)
[1] 1794.465
> AIC(mod2)
[1] 1774.525
> AIC(mod3)
[1] 1755.628
> AIC(mod4)
[1] 1753.669

According to AIC, the best model is mod3. But because the models are nested, we can
check with a likelihood ratio test if the differences are significant:

> anova(mod1,mod2,mod3,mod4)
refitting model(s) with ML (instead of REML)
Data: sleepstudy
Models:
mod1: Reaction ~ Days + (1 | Subject)
mod2: Reaction ~ Days + (0 + Days | Subject)
mod4: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)
mod3: Reaction ~ Days + (Days | Subject)
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod1 4 1802.1 1814.8 -897.04 1794.1
mod2 4 1782.1 1794.8 -887.04 1774.1 19.9983 0 < 2.2e-16 ***
mod4 5 1762.0 1778.0 -876.00 1752.0 22.0771 1 2.619e-06 ***
mod3 6 1763.9 1783.1 -875.97 1751.9 0.0639 1 0.8004

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So the differences between mod1 and mod2 and mod2 and mod4 are significant. So mod1
should not be considered at all. However, the difference between mod3 and mod4 is not
significant. Note that the AIC values are a bit different because, as the message in the first
line says, the models were refitted using ML (maximum likelihood). We could use the
method “ML” in the lmer() function as well. It is just that REML (restricted maximum
likelihood) is the default method. But the conclusions would be very similar.
In conclusion, even though AIC favors mod4, we should choose mod3 because the
difference in AIC is not significant, and mod2 has one parameter less. This is the way to
keep with the principle of maximum parsimony. However, the correlation between the
random slope and intercept is very low. Form this point of view, mod4 makes more sense.

> summary(mod3)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)

80

 Data: sleepstudy

REML criterion at convergence: 1743.6

Scaled residuals:
 Min 1Q Median 3Q Max
-3.9536 -0.4634 0.0231 0.4634 5.1793

Random effects:
 Groups Name Variance Std.Dev. Corr
 Subject (Intercept) 612.09 24.740
 Days 35.07 5.922 0.07
 Residual 654.94 25.592
Number of obs: 180, groups: Subject, 18

Fixed effects:
 Estimate Std. Error t value
(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77

Correlation of Fixed Effects:
 (Intr)
Days -0.138

Now, before going to the next section, let's see a scheme picture of our statistical models:

81

Section 4: Introduction to GLZ, GAM and Meta-Analysis

Contents

4.1 Introduction to Generalized Linear Models

4.2 Introduction to Generalized Additive Models

4.3 Introduction to Meta - Analysis

82

4.1 Introduction to Generalized Linear Models

These models (GLZ) are a generalization of the GLM to situations where there might be
some sort of non linearity (smooth monotonically increasing functions) and the model error,
or residuals, do not necessarily follow a Normal distribution. So, in the model, we have to
specify which distribution follows the error term. The possible distributions belong to the
exponential family (Poisson, Gaussian = Normal, Binomial, Gamma, and other related). It
is very common to use these models for errors following binomial distribution. Binomial
distributions describe the error of phenomena with only two possible outcomes (like
presence/absence). The GLZ with binomial error distribution was previously known (and
still often today) e previously known “logistic regression”. The GLZ with Poisson
distribution was formerly known as “Poisson regression” or “log normal regression”.
In the GLZ, the relationship between the predictors and the response variable is not
defined with a model for the data, as in the GLM. This is because in the GLZ we may need
non linear – models. Instead, the relationship is defined with a model function for the
relationship between the predictors and expected value of the response variable. What this
model function does is linearizing the relationship. This model function is called “link”
function. For the Binomial distribution, the link function is the logit function. For the Poisson
distribution, the link function is the log function. For the Normal or Gaussian distribution,
the link function is the identity function.
These concepts are summarized in the following equations. A GLM can be simplified:

Where µi are the expected or predicted values of the response variable, ßi the coefficients
of the predictor variables Xi, and ϵi are the model errors, which are normally distributed.
Then, if the formula of a GLZ model can be simplified as:

Where g() is the link function, that linearizes the relationship (without g(), ß could be not
linear respect to µ, and ϵ not normally distributed).
Typical variables that are analyzed with GLZ are count data, binomial outcomes like
presence/absence and phenomena that show aggregation in the response. They are
interesting, although less usual, the “zero inflated models”, which are data that have an
excess of zero values, like the count of rare and/or aggregated events. Ther is also a
“multinomial” version of logistic regression for those depedent varaibles that have more
than 2 categories.
Apart from these features, GLZ are similar in structure to the GLM. They can admit
random factors (Generalized mixed linear models, called GLMM) nested factors, etc.
Another difference comes at the evaluation of the main effects, which can not be
performed with Anova, since the Fischer – Snedecor F statistic is sensitive to non –
normality of errors. Instead, it is used the Analysis of Deviance, which consists in the same
idea of the residuals least squares estimate of the unexplained variance generalized to
models fit by maximum likelihood estimates. The contrast statistic follows a chi – squared
distribution.

Example with binomial error distribution (file R.S4.1)

83

We are going to use an example taken from Simon N. Wood (University of Bath, UK)
course on statistics. These data consist in the relation between blood creatine kinase
levels and suffering a heart attack (this is a binomial outcome: heart attack/no heart
attack). The data on suffering heart attack are the numbers of patients that suffered/not
suffered heart attack. This is a plot of creatine kinase levels versus the numbers of patients
with the two outcomes.

> plot(dat$CK.level,dat$Heart.Attack, type="l")
> points(dat$CK.level,dat$Not.Heart.Attack,type="l",lty=2)
> legend("topright",c("Heart attack","Not heart attack"),lty=c(1,2))

And these are the levels of Creatine Kinase versus the proportion of patients suffering a
heart attack.

> prop<-dat$Heart.Attack/(dat$Heart.Attack+dat$Not.Heart.Attack)
> plot(dat$CK.level,prop,pch=19)

As you can guess from these two plots, the creatine kinase levels are a good diagnosis for

84

the risk of suffering heart attacks. Because we have a binomial outcome, we need to
provide a binomial distribution as an error distribution.
Now, let's fit a model with R. The function for GLZ is glm(). Our response variable can not
be just the proportion of heart attacks. This is because this proportion comes from
evaluating a different number of patients at each value of creatine kinase, and we need to
provide information about this number of patients (n of each outcome). This can be done in
two different ways:
- Provide the proportion of heart attacks and, with the argument “weights” a vector of
weights with the number of patients (n) from which each outcome was evaluated.
- Provide the response variable as a two column vector with the number of patients for the
two results of the outcome.

This would not be needed if our response variable was a binary variable, where there ir no
effect of n.
In our present case, we are going to choose the second option:

> mod1<-glm(cbind(Heart.Attack,Not.Heart.Attack)~CK.level,family=binomial,data=dat)
> summary(mod1)

Call:
glm(formula = cbind(Heart.Attack, Not.Heart.Attack) ~ CK.level,
 family = binomial, data = dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.08184 -1.93008 0.01652 0.41772 2.60362

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***
CK.level 0.031244 0.003619 8.633 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 271.712 on 11 degrees of freedom
Residual deviance: 36.929 on 10 degrees of freedom
AIC: 62.334

Number of Fisher Scoring iterations: 6

The information provided in the summary is very similar to that of the linear models.
Except that now, the Deviance tells us more or less what the residual squares error in the
GLM. Now, we can plot the model to check the behavior of residuals vs predicted values,
QQ plot, etc.:

> plot(mod1)

85

The interpretation of these plots is very much like that for GLM, except that there might be
departures from normality in the QQ plot because the predicted values are in the scale of
the linear predictor, rather than the response variable (remember that in the GLZ the
response variable is not linear against the predictors, it is linearized with the link function).
But we see two things that do not look good: first, a strange trend in the residual vs fitted
plot, and second, two points (3 and 1) with large values of Cook distance (and also
leverage in the case of point 1).
These problems are not easy to solve. One of the reasons is that there are very few data.
With few data it is easier that certain data points had large leverage or Cook's distance
values. The trend on the residuals vs fitted plot means that we are missing something in
the model predictors. “Something” means more parameters, which could be obtained with
more predictor variables. But we do not have more predictor variables for our data. So, we
could also try a non – linear function, that uses more parameters, without increasing the
number of predictor variables. For instance, we could use a cubic function. This is
suggested by the “S” shape of the trend in the residual vs fitted values plot. In a GLM
model we can not change the functional form from being linear. But, as we said in the
introduction to this section, the GLZ allow non linear functions if they are smooth and
monotonically increasing. So, this could be a new model formulation to try:

> mod2<-
glm(cbind(Heart.Attack,Not.Heart.Attack)~CK.level+I(CK.level^2)+I(CK.level^3),family=bino
mial,data=dat)
> summary(mod2)

86

Call:
glm(formula = cbind(Heart.Attack, Not.Heart.Attack) ~ CK.level +
 I(CK.level^2) + I(CK.level^3), family = binomial, data = dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.99572 -0.08966 0.07468 0.17815 1.61096

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.786e+00 9.268e-01 -6.243 4.30e-10 ***
CK.level 1.102e-01 2.139e-02 5.153 2.57e-07 ***
I(CK.level^2) -4.649e-04 1.381e-04 -3.367 0.00076 ***
I(CK.level^3) 6.448e-07 2.544e-07 2.535 0.01125 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 271.7124 on 11 degrees of freedom
Residual deviance: 4.2525 on 8 degrees of freedom
AIC: 33.658

Number of Fisher Scoring iterations: 6

This model looks promising. All its terms are significant, and the residual deviance was
reduced from 36.9 to 4.2. This, at the cost of adding two extra – parameters (the
coefficients for the squared and the cubic term). We will see later if the increase in the
explained deviance could balance the penalty paid for these extra 2 parameters.
Now, let´s have a look to the new model plots:

> plot(mod2)

87

A few things look better know. There is no weird trend in the residual vs. fitted plot, and the
leverage and Cook distances are in an adequate range. However, there are still a few
points that look a bit “out” of the model standards. But, as it was said before, with so few
data it is difficult not to have any problem. Now, let's look at the AIC for both models:

> AIC(mod1)
[1] 62.3339
> AIC(mod2)
[1] 33.65773

The AIC from model 2 looks definitely better. So the penalty paid for having to extra –
parameters is balanced by the increase in explanation of deviance. It is probably
significantly different, but it is always good to test it with a likelihood – ratio test (since the
models are nested):

> anova(mod1,mod2,test="Chisq")
Analysis of Deviance Table

Model 1: cbind(Heart.Attack, Not.Heart.Attack) ~ CK.level
Model 2: cbind(Heart.Attack, Not.Heart.Attack) ~ CK.level + I(CK.level^2) +
 I(CK.level^3)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 10 36.929
2 8 4.252 2 32.676 8.025e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The difference is significantly, so we have to select mod2 as the best model. Let's see now
how the analysis of deviance looks:

> require(car)
> Anova(mod2)
Analysis of Deviance Table (Type II tests)

Response: cbind(Heart.Attack, Not.Heart.Attack)
 LR Chisq Df Pr(>Chisq)
CK.level 47.863 1 4.570e-12 ***

88

I(CK.level^2) 18.027 1 2.178e-05 ***
I(CK.level^3) 11.158 1 0.0008368 ***

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The effects are all highly significant.
If needed (this is not our case here) it is possible to perform post – hoc tests, as in the
GLM, with the glht() function, from package multcomp.
It is interesting to know the predicted probabilities from mod2 for suffering or not heart
attack, comparing them in a plot with the actual proportion:

> pred<-predict(mod2)
> plot(dat$CK.level,pred,type="l")
> par(new=T)
> plot(dat$CK.level,prop,yaxt="n")

Now we are able to add the GLZ component to our scheme from page 81:

89

90

4.2 Introduction to Generalized Additive Models

As we have discussed in the section devoted to non – parametric regression (Section 1.4,
page 32) the non parametric models, in certain aspects, offer advantages with respect to
parametric models. Parametric models have the problem that their success in the fitting
process depends a lot on the sample data, particularly when data are few and there is no
good knowledge of the underlying processes. So there is a risk of fitting a wrong model to
data. Then, parametric models have the advantage of being very stable and producing
very accurate predictions. But if you have chosen the wrong model, these advantages
become a problem. On the other hand, non – parametric models are more flexible, they
can adapt better to data, they can lead better with occasional perturbations in the data. In
general they are more sensitive to the factors that are influencing a process, so it is easier
to detect the effect of certain variables in your data that the “rigid” parametric forms may
not detect.
So, the technique of Generalized Additive Models (GAM) aims to extend the advantages of
GLM and GLZ for hypothesis testing to a frame were models are fitted with non parametric
regression methods. But, initially, there was a problem called “the curse of dimensionality”.
This problem arises when considering the effect of various predictors in a response
variable (in our previous examples of non – parametric regressions there was only one
predictor, but extending the GLM, we are interested in having more predictors). If each
predictor is fitted with a non parametric method, the final models that comes out,
considering all parameters and possible interactions, has an enormous complexity in terms
of dimensions, that make it impossible to be estimated in the frame of your data unless
you have extremely high numbers of data. This problem was solved by simplifying the
model, assuming that the effects of the predictor functions are always additive, and so
there is not a huge number of interactions between parameters (so here is why they are
called generalized “additive” models). Basically, this is a similar idea as the introduction of
the “link” function in GLZ. The “link” function in GAM would be then the set of non –
parametric functions that predict our response variable. Here is a general formula for these
models that exemplifies well this aspects. If the predicted values of our response variable
(µi) are given by an additive series of non parametric functions (fi):

Using the link function, this can be have the form of a simple additive GLM:

Where the sum of fi functions is linear with respect to g(ui).
The error term could be any distribution from the exponential family (Normal, Poisson,
Binomial, etc.) same as for the GLZ.

Example (file R.S4.2)

We are going to work a classic example of GAM from Hastie & Tibshirani (1990), named
“kyphosis”. The data set is available in the package gam, which, together with package
mgcv are those that offer the best tools from R for GAM and GAMM modeling. The data
consist in the results of a spinal operation called laminectomy on children, to correct for a

91

condition called “kyphosis”. The response variable is binary (presence/absence of
kyphosis), and the independent variables are the age of children in months, the number of
vertebra involved in the operation, and the level of the operation.

> require(gam)
> data(kyphosis)
> head(kyphosis)
 Kyphosis Age Number Start
1 absent 71 3 5
2 absent 158 3 14
3 present 128 4 5
4 absent 2 5 1
5 absent 1 4 15
6 absent 1 2 16

Choosing an appropriate GAM model is complicated because of the great variety of model
forms available. There is a choice of variables to include in the model (like in GLM or GLZ)
but there is a choice as well of error distribution (unlike GLM, but same as GLZ) and the
most complicated aspected, that does not exist in GLM and GLZ is the choice of smooth
non parametric functions for each predictor. These smooth functions can be obtained with
polynomials, splines, etc. and several choices are to be made as well regarding the degree
of polynomials, kernel, bandwidth for smoothing (h). In order to select the best model form
we need the help of model plots and specific selection criteria, similar to those that we
employed for the GLM and GLZ.
In our present example, there is at least one thing that is clear: the response or dependent
variable has binomial error distribution, since it is a binary variable (presence/absence).
Regarding the bandwidth selection criteria, we are going to choose one of the methods
that in principle I consider the most objective and widely applicable: the generalized cross
– validation. This method is implemented by default in the gam() function from package
mgcv (do not mistake with function gam() from package gam). This function only has the
spline method as a method to define the smoothed functions, and it selects automatically
as well the degree of smoothing of the splines. So, in this example, we are going to decide
only which variables to include in the model (and also which of them to smooth or not).
Another difference between these two functions is that the function gam() from gam
package uses a backfitting algorithm for model fit, whereas gam() from mgcv uses a
penalized splines (likelihood – based) method.
So, if we want to use different methods than the splines for obtaining the smooth functions
(polynomial, loess) these are only supported by gam() function from gam package.
As we know, from our previous introduction, GAM do not consider interactions between
predictors (as GLM or GLZ do) so we do not have to test them in our model. This
simplification is an advantage for the analysis of these models, but on the other hand is a
limitation for cases when strong interactions actually exist among our predictors. In the
coding of these models with R, it is still possible to include interactions, but they are not
recommended, unless if we are talking about one or some few low order interactions.
As a starting point it is good to fit a GLZ, in order to compare its fit with the forthcoming
GAM models:

> mod1<-glm(Kyphosis~Age*Start*Number,family=binomial,data=kyphosis)
> summary(mod1)

92

Call:
glm(formula = Kyphosis ~ Age * Start * Number, family = binomial,
 data = kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.8250 -0.4480 -0.2835 -0.1580 2.2782

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -17.672117 8.894370 -1.987 0.0469 *
Age 0.156794 0.071804 2.184 0.0290 *
Start 0.842401 0.650628 1.295 0.1954
Number 3.220739 1.754246 1.836 0.0664 .
Age:Start -0.010049 0.005469 -1.837 0.0662 .
Age:Number -0.025389 0.013597 -1.867 0.0619 .
Start:Number -0.181746 0.135846 -1.338 0.1809
Age:Start:Number 0.001667 0.001126 1.481 0.1385

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 54.402 on 73 degrees of freedom
AIC: 70.402

Number of Fisher Scoring iterations: 6

As we can see, the interaction terms of the model do not seem to indicate interaction.
Among the rest of the predictors, only “Age” seems to be significant. Now, let's test more
specifically the interactions with an analysis of deviance:

> anova(mod1,test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: Kyphosis

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 80 83.234
Age 1 1.3020 79 81.932 0.25385
Start 1 16.6334 78 65.299 4.534e-05 ***
Number 1 3.9191 77 61.380 0.04774 *
Age:Start 1 0.9370 76 60.443 0.33305
Age:Number 1 3.4418 75 57.001 0.06357 .
Start:Number 1 0.0069 74 56.994 0.93400
Age:Start:Number 1 2.5922 73 54.402 0.10739

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

93

This test is adding sequentially to a null model (only with intercept) each of the predictors.
After adding the predictors “Age”, “Start”, and number, the rest of the terms do not
contribute significantly to the reduction of deviance. So, we can definitely forget about the
interactions, and we reformulate mod1 without interactions, only additive terms:

> mod1<-glm(Kyphosis~Age+Start+Number,family=binomial,data=kyphosis)
> summary(mod1)

Call:
glm(formula = Kyphosis ~ Age + Start + Number, family = binomial,
 data = kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.3124 -0.5484 -0.3632 -0.1659 2.1613

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.036934 1.449575 -1.405 0.15996
Age 0.010930 0.006446 1.696 0.08996 .
Start -0.206510 0.067699 -3.050 0.00229 **
Number 0.410601 0.224861 1.826 0.06785 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38

Number of Fisher Scoring iterations: 5

“Start” is significant, but the other predictors are not (although they are close to be). The
AIC is better than the previous version with parameters. We should now check the model
plots:

> par(mfrow=c(2,2))
> plot(mod1)

94

These model plots do not look good at all. Now, we are going to try to fit a series of GAM
models. We start with a model with smoothing functions for all our predictors except
“Number”. The reason is that this predictor has only one data for two of its levels, and then
the smooth function is not going to work on those levels. We should better add it as a
linear covariate (in the output, it will be treated then as a parametric predictor):

> mod2<-mgcv::gam(Kyphosis~s(Age)+s(Start)+Number,family=binomial,data=kyphosis)
> summary(mod2)

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Age) + s(Start) + Number

Parametric coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.5926 1.1464 -3.134 0.00172 **
Number 0.3333 0.2324 1.434 0.15148

95

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df Chi.sq p-value
s(Age) 2.209 2.790 6.305 0.0838 .
s(Start) 2.020 2.523 9.645 0.0149 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.355 Deviance explained = 39.4%
UBRE score = -0.22384 Scale est. = 1 n = 81

It seems that “Number” is not significant, as well as “Age” (although this is close to
significance). We should plot the model now in order to check for these two variables were
smoothed:

> par(mfrow=c(1,2))
> plot(mod2)

So the smoothed “Age” is close to a flat line, but still has some sort of clear “maximum”,
that is why it s close o be significant (a flat line would be not significant). On the other
hand, “Start” shows a clear trend that is well fitted with this spline. We can have a look at
some additional plots:

This is way better than our previous QQ plot from glm. Since the error distribution is not
normal, some deviations from it are expected, but not as much as in mod1.

96

Now, we should try new models without those predictors that do might not be useful
(“Age”, “Number”) and compare all our models in order to select the best one. This is very
important, because in GAM models, the p – values are only approximations, so the best
way to test the influence of predictors is test the performance of models with and without
these predictors.

> mod3<-mgcv::gam(Kyphosis~s(Age)+s(Start),family=binomial,data=kyphosis)
> summary(mod3)

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Age) + s(Start)

Parametric coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1723 0.4846 -4.483 7.37e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df Chi.sq p-value
s(Age) 2.183 2.761 6.348 0.0805 .
s(Start) 2.199 2.740 12.905 0.0041 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.33 Deviance explained = 37.1%
UBRE score = -0.2204 Scale est. = 1 n = 81

The R squared and deviance explained are both a bit lower, but model does not seem to
change a lot. Now, a model with only “Start”:

> mod4<-mgcv::gam(Kyphosis~s(Start),family=binomial,data=kyphosis)
> summary(mod4)

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Start)

Parametric coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8951 0.4304 -4.403 1.07e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df Chi.sq p-value
s(Start) 2.209 2.756 13.22 0.0036 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

97

R-sq.(adj) = 0.222 Deviance explained = 25.6%
UBRE score = -0.15665 Scale est. = 1 n = 81

In this case, the model seems to perform significantly worse. Let's test it with a deviance
test for all these 3 GAM models (the GLZ is obviously outperformed by these 3):

> anova.gam(mod2,mod3,mod4,test="Chisq")
Analysis of Deviance Table

Model 1: Kyphosis ~ s(Age) + s(Start) + Number
Model 2: Kyphosis ~ s(Age) + s(Start)
Model 3: Kyphosis ~ s(Start)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 74.770 50.410
2 75.618 52.383 -0.84749 -1.9735 0.13059
3 77.791 61.893 -2.17293 -9.5094 0.01046 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

There is no significant difference between mod2 and mod3 (named Model 1 and Model 2
in the output, respectively), but there is indeed between mod4 and the others. So,
accordingly with the principle of maximum parsimony, we have to select mod3, with only
two predictors, both smoothed with splines.

So, with GAM models (that may include GAMM as well) we are done with our overview of
the main frames for statistical modeling. We can add the GAM component to our general
scheme:

98

4.3 Introduction to Meta – Analysis

The techniques of Meta – Analysis are aimed to synthesize quantitatively research
performed in different experiments, by different researchers, around a same hypothesis.
These techniques treat each experiment as a single data for our analysis, synthesizing
their results with a few measures. Then they perform a single analysis in order to test the
hypothesis with the, in principle, increased power of including all these results. One of the
main problems is gathering all the data needed for this analysis, which consist mainly in an
exhaustive work of literature review. Then, a synthesizing measure has to be established
in order to standardize the results from different experiments. When we have all these data
ready, we can perform the test. The test, in principle, could be performed within any
framework of statistical modeling among those that we have seen, from simple linear
regression to GAM. But the most common are simple linear models of the kind of GLM.
Meta – analysis is showing increased interest among scientists from different disciplines,
since it is a good tool for synthesizing knowledge from large amounts of data sets and
experiments.
Meta – analysis improve previous methods for quantitative reviews, which were very
simple, like “vote counting” or “combined probabilities” methods.
It is not a technique that comes to substitute or improve qualitative reviews, rather,
complements them. Meta – analysis usually do not produce much conceptual avance, but
they have certain features that complement qualitative reviews: it gives quantitative
measures, it is repeatable and can balance the studies included by weighting experiments
in function of their sample size. But, it has also the disadvantage of being influenced by the
studies included in the analysis. This is why the literature review task is very important.
The general steps to perform a meta – analysis are the following:

- Literature search: This a fundamental step, you have to reach as many studies as
possible in order to avoid publication bias. The problem is that even with today's data
bases, there are many studies that are difficult to reach, such as reports, master or Ph. D.
dissertations... Another aspect to consider is whether to reject including certain studies
based in their quality (critics say “garbage in – garbage out”). The problem is that criterions
for rejecting studies have to be objective (for instance, reject experiments without controls
or with pseudo – replication).

- Measures of effect size: the “effect size” is a standardized measure of the effect on the
response variable of interest of the predictors that we are considering. We have to extract
the value of effect size for all our studies. Several common measures of effect size are: the
odds ratio (ratio of the probability that the event occurs/does not occur), correlation
coefficient, standardized mean difference (there are several formulas, some are similar to
the t statistic), Log - response ratio (LN(average treatment/average control). Other
measures of effect size could be p – values, or certain statistics (t statistic, F statistic)
which in fact are standardized measures of effect size. But these latter are less preferred.
Then, a database has to be constructed with all the references, information about
experimental design of each work, factors, sample sizes, etc. and the corresponding
measures of effect size.

- Weighting effect sizes: this could be performed or not, but it is recommended when we
have large differences in sample size among studies.

99

- Calculate averages and confidence intervals for effect sizes and contrast hypothesis.

Now, we are going to perform these tasks (except the literature review and database
construction) with an example data set from R.

Example (file R.S4.3)

Available R packages to perform meta – analysis are meta, rmeta and metafor. We are
going to use metafor. This package provides methods to conduct meta – analysis with
different model designs: contingency 2x2 tables, regression, GLM and GLZ, both with
random effects. It has many data sets that could be used as an example. Here, we will use
the data set dat.curtis1988 which contains a data base with experiments testing the effect
of elevated CO2 levels on woody plant mass.
First thing is to load the package (having a look at the help for a package is also a good
idea when we don't know much about package functions).

> require(metafor)
> ?metafor
> data(dat.curtis1998)
> head(dat.curtis1998)
 id papnum genus species function co2.ambi co2.elev units time pot method
1 21 44 ALNUS RUBRA N2FIX 350 650 ul/l 47 0.5 GC
2 22 44 ALNUS RUBRA N2FIX 350 650 ul/l 47 0.5 GC
3 27 121 ACER RUBRUM ANGIO 350 700 ppm 59 2.6 GH
4 32 121 QUERCUS PRINUS ANGIO 350 700 ppm 70 2.6 GH
5 35 121 MALUS DOMESTICA ANGIO 350 700 ppm 64 2.6 GH
6 38 121 ACER SACCHARINUM ANGIO 350 700 ppm 50 2.6 GH
 stock xtrt level m1i sd1i n1i m2i sd2i n2i
1 SEED FERT HIGH 6.8169 1.7699820 3 3.9450 1.1157970 5
2 SEED FERT CONTROL 2.5961 0.6674662 5 2.2512 0.3275839 5
3 SEED NONE . 2.9900 0.8560000 5 1.9300 0.5520000 5
4 SEED NONE . 5.9100 1.7420000 5 6.6200 1.6310000 5
5 SEED NONE . 4.6100 1.4070000 4 4.1000 1.2570000 4
6 SEED NONE . 10.7800 1.1630000 5 6.4200 2.0260000 3

So this data set contains the following information (it can be consulted in the help for this
data set): id is the observation number, papnum is the paper identification (several
observations might come from the same paper), genus and species are taxonomic
information about the involved species, function are the functional groups that the plants
belong to. co2.ambi and co2.elev are the CO2 levels of the control and treatment,
respectively. units are the units of CO2, time is the time of exposure to CO2, pot is the
growing method, method is the CO2 exposure facility, stock is the planting stock code, xtrt
is the interacting treatment code, level is the interacting treatment level codes, m1i is mean
plant mass under elevated CO2 level (the treatment), sd1i is the standard deviation of plant
mass under elevated CO2 level, n1i is the number of observations under elevated CO2
level, m2i is the mean plant mass under ambient CO2 level (the control), sd2i the standard
deviation of plant mass under ambient CO2 level and n2i the number of observations under
ambient CO2 level.
Now it is time to choose an appropriate measure of effect size. The function that we need
is escalc(). We need to look at the help from this function in order to know how to select an

100

appropriate measure of effect size.

> ?escalc

The key argument is “measure”, the actual measure of effect size to use. Looking at the
“details” section of the help page, we can see which kinds of measures of effect size are
available. We need a measure for quantitative variables. We could use the mean
difference, standardized, because the CO2 units are not the same, and, mainly, the CO2
level of the controls are not the same. There is the choice as well for the mean differences
with heteroscedastic groups (different group variances). But we are going to choose the
log transformed ratio of means, which is a very common measure of effect size. Many
statisticians like this measure because it is centered around 0 (when the 2 means have the
same value) with a distribution that is close to Normal. Because the experiments have
different sample sizes, we should better weight the effect sizes with these sample sizes.
The code for this function becomes then:

> ES<-
escalc(measure="ROM",n1i=n1i,n2i=n2i,m1i=m1i,m2i=m2i,sd1i=sd1i,sd2i=sd2i,data=dat.curtis1
998)

The actual effect sizes and its sample variances are returned as the two last columns.
Now, we are going to fit a GLM model with these effect sizes. The function that we need is
rma(). In the help pages and manual of this package, the predictor variables are called
“moderators”.
As you could imagine, in our data there are many variables that could be used as fixed
factors (genus, species, functional groups, CO2 exposure facility, the interacting treatment)
covariates (time of exposure). Random factors (genus, species or functional groups could
be random factors, depending on the researcher point of view or knowledge about the
data, growing method). The correct procedure would be to fit several models and compare
them with, for instance AIC and log – likelihood ratio test (there is the function
anova.rma.uni() in this package). But because we are only introducing meta – analysis in
this course, we are simply going to fit a couple of simple reasonable models and use them
as an example:

> mod1<-rma(yi=ES[,21],vi=ES[,22],mods=~function.+time+method,data=ES,method="FE")
> summary(mod1)

Fixed-Effects with Moderators Model (k = 102)

 logLik deviance AIC BIC AICc
-190.6529 658.4083 393.3058 409.0556 394.1900

Test for Residual Heterogeneity:
QE(df = 96) = 658.4083, p-val < .0001

Test of Moderators (coefficient(s) 2,3,4,5,6):
QM(df = 5) = 110.6102, p-val < .0001

Model Results:

 se zval pval ci.lb ci.ub

101

intrcpt 0.2665 0.0089 29.9665 <.0001 0.2490 0.2839 ***
function.GYMNO -0.0647 0.0120 -5.3977 <.0001 -0.0882 -0.0412 ***
function.N2FIX 0.0044 0.1099 0.0397 0.9684 -0.2111 0.2198
time -0.0000 0.0000 -1.8553 0.0636 -0.0001 0.0000 .
methodGH -0.0648 0.0119 -5.4326 <.0001 -0.0882 -0.0414 ***
methodOTC 0.1025 0.0315 3.2486 0.0012 0.0406 0.1643 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the help page of rma() we can check the various options to code the model. We used all
these predictors (“moderators”) as fixed effects, so we must set the argument “method” to
“FE”.
In the model results, the first value are the coefficients for each predictor. In the case of the
intercept, its value corresponds to the average “basal” size effect of our analysis. The other
coefficients show how each predictor increases or reduces its value. The interpretation is
the same as what we saw for linear regression and GLM.
The test for the residual heterogeneity suggest that residuals are not homogeneous. The
test for the moderators (predictors) suggest that they are overall significant, but looking at
the coefficients, it seems that the moderator “time” may not be significant. So, it is not a
bad idea to code a new model without “time” and compare it to the previous one with the
log – likelihood ratio test:

> mod2<-rma(yi=ES[,21],vi=ES[,22],mods=~function.+method,data=ES,method="FE")
> summary(mod2)

Fixed-Effects with Moderators Model (k = 102)

 logLik deviance AIC BIC AICc
-192.3739 661.8503 394.7478 407.8727 395.3728

Test for Residual Heterogeneity:
QE(df = 97) = 661.8503, p-val < .0001

Test of Moderators (coefficient(s) 2,3,4,5):
QM(df = 4) = 107.1682, p-val < .0001

Model Results:

 se zval pval ci.lb ci.ub
intrcpt 0.2616 0.0085 30.7903 <.0001 0.2449 0.2783 ***
function.GYMNO -0.0593 0.0116 -5.1007 <.0001 -0.0821 -0.0365 ***
function.N2FIX 0.0072 0.1099 0.0652 0.9480 -0.2082 0.2226
methodGH -0.0720 0.0113 -6.3811 <.0001 -0.0941 -0.0499 ***
methodOTC 0.0976 0.0314 3.1064 0.0019 0.0360 0.1592 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(mod1,mod2,test="Chisq")
 df AIC BIC AICc logLik LRT pval QE
Full 6 393.3058 409.0556 394.1900 -190.6529 658.4083
Reduced 5 394.7478 407.8727 395.3728 -192.3739 3.4420 0.0636 661.8503

102

The first model has slightly lower AIC value, but this difference is not significant, so we
should better choose mod2, that has one predictor less.
An important plot to evaluate a Meta – Analysis is the “forest plot”, that represents all the
data of size effects with their corresponding 95% confidence intervals.

> forest(mod2)

In this plot, each experiment (data point) has an area proportional to its sample size (that
we used to weight data). The dotted line follows the 0 value of log ratio of means (0 means
no effect). As you can see, most of our average effect sizes are above this value of 0, but
not all the confidence intervals. So, in most cases there is a significant positive effect, and
all our fixed factors have a significant effect, as we saw earlier. We can conclude that there
is a positive significant effect of CO2 levels on woody mass, that is modulated by several
predictors in different senses. But we should have a look as well at other techniques of
model diagnosis. The funnel plot is a common way to represent Meta – Analysis data that
tells us two things: First, check about our potential “publication bias”. “publication bias”
consist in the bias to publish works that either demonstrate or refute our hypothesis under
study. In principle, it is expected that small scale studies are more prone to publication
bias, whereas lasrge scale studies are always published, irrespective of the final
conclussion. Second, the presence of heterogeneity. The presence of heterogeneity was
already suggested by the previous Q test, but here we can check it visually, together with

103

publication bias:

> funnel(mod2)

In this plot we can see the “funnel” created by pseudo – confidence intervals for the model
residuals and their standard error. The lower the absolute value of the residuals, the lower
should be the standard error. So if residuals are heterogeneous in their errors, they should
increase their error in a constant ratio as they increase their absolute value (greater
residuals have greater error). This is what creates a “funnel” shape symmetric respect to
the 0 value for residuals. There are other magnitudes that could be represented as well in
this plot, and show a “funnel” shape as well. This “funnel” shape would be distorted if two
things happened:

- If residuals are not homogeneous, and their errors do not increase with their absolute
value.
- If there was some sot of publication bias towards the publication of either positive or
negative results. If there is no bias, both “sides” of the funnel should look the same (we
may then have an asymmetric funnel).

In this case, we might have both problems, residual heterogeneity (already suggested by
the Q test, as we mentioned earlier) and bias towards the exclusion of those studies with

104

smaller sample size (higher standard error). In this particular case, those studies that show
no effects of increasing CO2.
A QQ plot is also another good diagnosis plot for our model:

> qqnorm(mod2)

The plot shows problems with normality. The problems with residual heterogeneity and
normality could be solved if we are able to find a better model with new predictors,
perhaps some random effects, etc. but the problem with publication bias is not solvable.

105

Bibliography

- A Primer of ecological Statistics. N.J. Gotelli, A.M. Ellison. Second edition. Sinauer
Associates Inc. 2013.

- Experimental Design and Data Analysis for Biologists. G.P. Quinn, M.J. Keough.
Cambridge University Press, 2002.

- Introductory statistics with R. Peter Dalgaard. Springer. 2002.

- A beguinners guide to R (use R!). Alain Zuur, Elena N. Ieno, Erik H.W.G. Meesters.
Springer. 2009.

- Non linear regression with R. C. Ritz, J.C. Streibig. Springer 2008.

- Mixed Effects Models and Extensions in Ecology with R. A. Zuur, E.N. Ieno, N.
Walker, A.A. Saveliev, G.M. Smith. Springer, 2009.

- Multiple Comparisons Using R. F. Bretz, T. Hothorn, P. Westfall. Chapman & Hall,
2011.

- Extending the linear Model with R. J.J. Faraway. Chapman & Hall, 2006.

- Generalized Additive Models: An Introduction with R. S.N. Wood. Chapman & Hall,
2006.

- Introduction to Meta-Analysis. M. Borenstein, L.V. Hedges, J.P.T. Higgins, H.
Rothstein. Wiley, 2009.

- Applied Meta-Analysis with R. D.G. Cheng, K.E. Peace. Chapman & Hall, 2013.

- An Introduction to applied Multivariate Analysis with R. B. Everitt, T. Hothorn.
Springer, 2011.

- Numerical Ecology with R. D. Borcard, F. Gillet, P. Legendre. Springer, 2011.

- A Primer of Ecology with R. M. Henry H. Stevens. 2009, Springer.

106

